• Title/Summary/Keyword: TNF signaling

Search Result 418, Processing Time 0.027 seconds

Inhibitory Role of TRIP-Br1/XIAP in Necroptosis under Nutrient/Serum Starvation

  • Sandag, Zolzaya;Jung, Samil;Quynh, Nguyen Thi Ngoc;Myagmarjav, Davaajargal;Anh, Nguyen Hai;Le, Dan-Diem Thi;Lee, Beom Suk;Mongre, Raj Kumar;Jo, Taeyeon;Lee, MyeongSok
    • Molecules and Cells
    • /
    • v.43 no.3
    • /
    • pp.236-250
    • /
    • 2020
  • Currently, many available anti-cancer therapies are targeting apoptosis. However, many cancer cells have acquired resistance to apoptosis. To overcome this problem, simultaneous induction of other types of programmed cell death in addition to apoptosis of cancer cells might be an attractive strategy. For this purpose, we initially investigated the inhibitory role of TRIP-Br1/XIAP in necroptosis, a regulated form of necrosis, under nutrient/serum starvation. Our data showed that necroptosis was significantly induced in all tested 9 different types of cancer cell lines in response to prolonged serum starvation. Among them, necroptosis was induced at a relatively lower level in MCF-7 breast cancer line that was highly resistant to apoptosis than that in other cancer cell lines. Interestingly, TRIP-Br1 oncogenic protein level was found to be very high in this cell line. Up-regulated TRIP-Br1 suppressed necroptosis by repressing reactive oxygen species generation. Such suppression of necroptosis was greatly enhanced by XIAP, a potent inhibitor of apoptosis. Our data also showed that TRIP-Br1 increased XIAP phosphorylation at serine87, an active form of XIAP. Our mitochondrial fractionation data revealed that TRIP-Br1 protein level was greatly increased in the mitochondria upon serum starvation. It suppressed the export of CypD, a vital regulator in mitochondria-mediated necroptosis, from mitochondria to cytosol. TRIP-Br1 also suppressed shikonin-mediated necroptosis, but not TNF-α-mediated necroptosis, implying possible presence of another signaling pathway in necroptosis. Taken together, our results suggest that TRIP-Br1/XIAP can function as onco-proteins by suppressing necroptosis of cancer cells under nutrient/serum starvation.

Anti-inflammatory Effects of Ethanol Extract from Bark of Acer barbinerve Maxim (청시닥나무 수피 에탄올 추출물의 항염증 효과)

  • Lee, Han-Na;Kim, Jin-Kyu;Kwon, Gyoo-Taik;Shim, Jae-Hoon;Kim, Jong-Dai;YoonPark, Jung-Han
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.9
    • /
    • pp.1242-1247
    • /
    • 2012
  • Acer barbinerve Maxim belongs to the Aceraceae tree family and is often consumed as an Oriental medicine. In this study, we investigated whether or not ethanol extract from the bark of A. barbinerve Max. (EBA) inhibits lipopolysaccharide (LPS)-induced inflammatory responses in Raw264.7 macrophages. EBA was fractionated using n-hexane, $CH_2Cl_2$, ethyl acetate (EtOAc), and water. Raw264.7 cells were treated with 20 ${\mu}g/mL$ of EBA and the EBA fractions. EBA inhibited LPS-induced nitric oxide (NO) production. Among the three fractions, EtOAc fraction of EBA (EFEBA) was the most effective in inhibiting LPS-induced NO production without significant cytotoxicity in Raw264.7 cells. EFEBA futher reduced LPS-induced expression of inducible NO synthase (iNOS) proteins and its corresponding mRNA. Additionally, EFEBA decreased the mRNA levels of interleukin (IL)-6, IL-$1{\beta}$, and tumor necrosis factor-${\alpha}$ in LPS-treated Raw264.7 cells. Lastly, EFEBA inhibited LPS-induced degradation of the inhibitor of kappaBalpha ($I{\kappa}B{\alpha}$) as well as phosphorylation of p65 nuclear factor-${\kappa}B$ (NF-${\kappa}B$). These results indicate that EFEBA exhibits strong anti-inflammatory effects and can be developed as a potential anti-inflammatory agent.

Dasatinib Inhibits Lyn and Fyn Src-Family Kinases in Mast Cells to Suppress Type I Hypersensitivity in Mice

  • Lee, Dajeong;Park, Young Hwan;Lee, Ji Eon;Kim, Hyuk Soon;Min, Keun Young;Jo, Min Geun;Kim, Hyung Sik;Choi, Wahn Soo;Kim, Young Mi
    • Biomolecules & Therapeutics
    • /
    • v.28 no.5
    • /
    • pp.456-464
    • /
    • 2020
  • Mast cells (MCs) are systemically distributed and secrete several allergic mediators such as histamine and leukotrienes to cause type I hypersensitivity. Dasatinib is a type of anti-cancer agent and it has also been reported to inhibit human basophils. However, dasatinib has not been reported for its inhibitory effects on MCs or type I hypersensitivity in mice. In this study, we examined the inhibitory effect of dasatinib on MCs and MC-mediated allergic response in vitro and in vivo. In vitro, dasatinib inhibited the degranulation of MCs by antigen stimulation in a dose-dependent manner (IC50, ~34 nM for RBL-2H3 cells; ~52 nM for BMMCs) without any cytotoxicity. It also suppressed the secretion of inflammatory cytokines IL-4 and TNF-α by antigen stimulation. Furthermore, dasatinib inhibited MC-mediated passive cutaneous anaphylaxis (PCA) in mice (ED50, ~29 mg/kg). Notably, dasatinib significantly suppressed the degranulation of MCs in the ear tissue. As the mechanism of its effect, dasatinib inhibited the activation of Syk and Syk-mediated downstream signaling proteins, LAT, PLCγ1, and three typical MAP kinases (Erk1/2, JNK, and p38), which are essential for the activation of MCs. Interestingly, in vitro tyrosine kinase assay, dasatinib directly inhibited the activities of Lyn and Fyn, the upstream tyrosine kinases of Syk in MCs. Taken together, dasatinib suppresses MCs and PCA in vitro and in vivo through the inhibition of Lyn and Fyn Src-family kinases. Therefore, we suggest the possibility of repositioning the anti-cancer drug dasatinib as a treatment for various MC-mediated type I hypersensitive diseases.

Prediction of itching diagnostic marker through RNA sequencing of contact hypersensitivity and skin scratching stimulation mice models

  • Kim, Young-Won;Zhou, Tong;Ko, Eun-A;Kim, Seongtae;Lee, Donghee;Seo, Yelim;Kwon, Nahee;Choi, Taeyeon;Lim, Heejung;Cho, Sungvin;Bae, Gwanhui;Hwang, Yuseong;Kim, Dojin;Park, Hyewon;Lee, Minjae;Jang, Eunkyung;Choi, Jeongyoon;Bae, Hyemi;Lim, Inja;Bang, Hyoweon;Ko, Jae-Hong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.2
    • /
    • pp.151-159
    • /
    • 2019
  • Pruritus (itching) is classically defined as an unpleasant cutaneous sensation that leads to scratching behavior. Although the scientific criteria of classification for pruritic diseases are not clear, it can be divided as acute or chronic by duration of symptoms. In this study, we investigated whether skin injury caused by chemical (contact hypersensitivity, CHS) or physical (skin-scratching stimulation, SSS) stimuli causes initial pruritus and analyzed gene expression profiles systemically to determine how changes in skin gene expression in the affected area are related to itching. In both CHS and SSS, we ranked the Gene Ontology Biological Process terms that are generally associated with changes. The factors associated with upregulation were keratinization, inflammatory response and neutrophil chemotaxis. The Kyoto Encyclopedia of Genes and Genomes pathway shows the difference of immune system, cell growth and death, signaling molecules and interactions, and signal transduction pathways. Il1a, Il1b and Il22 were upregulated in the CHS, and Tnf, Tnfrsf1b, Il1b, Il1r1 and Il6 were upregulated in the SSS. Trpc1 channel genes were observed in representative itching-related candidate genes. By comparing and analyzing RNA-sequencing data obtained from the skin tissue of each animal model in these characteristic stages, it is possible to find useful diagnostic markers for the treatment of itching, to diagnose itching causes and to apply customized treatment.

Suppression of Lipopolysaccharide-Induced Inflammatory and Oxidative Response by 5-Aminolevulinic Acid in RAW 264.7 Macrophages and Zebrafish Larvae

  • Ji, Seon Yeong;Cha, Hee-Jae;Molagoda, Ilandarage Menu Neelaka;Kim, Min Yeong;Kim, So Young;Hwangbo, Hyun;Lee, Hyesook;Kim, Gi-Young;Kim, Do-Hyung;Hyun, Jin Won;Kim, Heui-Soo;Kim, Suhkmann;Jin, Cheng-Yun;Choi, Yung Hyun
    • Biomolecules & Therapeutics
    • /
    • v.29 no.6
    • /
    • pp.685-696
    • /
    • 2021
  • In this study, we investigated the inhibitory effect of 5-aminolevulinic acid (ALA), a heme precursor, on inflammatory and oxidative stress activated by lipopolysaccharide (LPS) in RAW 264.7 macrophages by estimating nitric oxide (NO), prostaglandin E2 (PGE2), cytokines, and reactive oxygen species (ROS). We also evaluated the molecular mechanisms through analysis of the expression of their regulatory genes, and further evaluated the anti-inflammatory and antioxidant efficacy of ALA against LPS in the zebrafish model. Our results indicated that ALA treatment significantly attenuated the LPS-induced release of pro-inflammatory mediators including NO and PGE2, which was associated with decreased inducible NO synthase and cyclooxygenase-2 expression. ALA also inhibited the LPS-induced expression of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, reducing their extracellular secretion. Additionally, ALA abolished ROS generation, improved the mitochondrial mass, and enhanced the expression of heme oxygenase-1 (HO-1) and the activation of nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) in LPS-stimulated RAW 264.7 macrophages. However, zinc protoporphyrin, a specific inhibitor of HO-1, reversed the ALA-mediated inhibition of pro-inflammatory cytokines production and activation of mitochondrial function in LPS-treated RAW 264.7 macrophages. Furthermore, ALA significantly abolished the expression of LPS-induced pro-inflammatory mediators and cytokines, and showed strong protective effects against NO and ROS production in zebrafish larvae. In conclusion, our findings suggest that ALA exerts LPS-induced anti-inflammatory and antioxidant effects by upregulating the Nrf2/HO-1 signaling pathway, and that ALA can be a potential functional agent to prevent inflammatory and oxidative damage.

In vitro Anti-oxidative and Anti-inflammatory Activities of Horse-bone Extract via Up-regulation of Heme-oxygenase 1 (말뼈추출물의 Hemeoxygenase-1의 발현 조절을 통한 시험관내 항염증 효과)

  • Im, Eun Ju;Lee, Ki-Ja;Cho, Gil-Jae;Kim, Hyun-Kyoung;Kim, Suk;Rhee, Man Hee
    • Journal of agriculture & life science
    • /
    • v.50 no.2
    • /
    • pp.139-150
    • /
    • 2016
  • Few studies have been reported that horse-bone extract(HBE) can prevent and treatment of bone diseases. However, HBE' therapeutic activities are still not fully understood. This study determined whether HBE up-regulates hemeoxygenase 1(HO-1) and this mediates its anti-inflammatory effect in murine macrophages.Nitric oxide(NO) assay, MTT assay and DPPH assay were performed. In addition, Western blotting and real time PCR were used to determine protein expression, and gene expression, respectively. HBE significantly inhibited NO production without observable cytotoxicity. In addition, HBE attenuated inducible nitric oxide synthase (iNOS), cyclooxygenase-2(COX-2) and phospho (p)-ERK protein expressions in LPS(0.1㎍/ml) stimulated RAW264.7 cells. On the other hand, HBE alone up-regulated HO-1 and Nrf-2 expressions, which mediated HBE's anti-inflammatory effect in RAW264.7 cells. Finally, HBE up-regulated HO-1 and impaired ERK1/2 signaling pathways, and thus it may provide protection against cellular oxidation and inflammation.

The Gut Microbiota of Pregnant Rats Alleviates Fetal Growth Restriction by Inhibiting the TLR9/MyD88 Pathway

  • Hui Tang;Hanmei Li;Dan Li;Jing Peng;Xian Zhang;Weitao Yang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1213-1227
    • /
    • 2023
  • Fetal growth restriction (FGR) is a prevalent obstetric condition. This study aimed to investigate the role of Toll-like receptor 9 (TLR9) in regulating the inflammatory response and gut microbiota structure in FGR. An FGR animal model was established in rats, and ODN1668 and hydroxychloroquine (HCQ) were administered. Changes in gut microbiota structure were assessed using 16S rRNA sequencing, and fecal microbiota transplantation (FMT) was conducted. HTR-8/Svneo cells were treated with ODN1668 and HCQ to evaluate cell growth. Histopathological analysis was performed, and relative factor levels were measured. The results showed that FGR rats exhibited elevated levels of TLR9 and myeloid differentiating primary response gene 88 (MyD88). In vitro experiments demonstrated that TLR9 inhibited trophoblast cell proliferation and invasion. TLR9 upregulated lipopolysaccharide (LPS), LPS-binding protein (LBP), interleukin (IL)-1β and tumor necrosis factor (TNF)-α while downregulating IL-10. TLR9 activated the TARF3-TBK1-IRF3 signaling pathway. In vivo experiments showed HCQ reduced inflammation in FGR rats, and the relative cytokine expression followed a similar trend to that observed in vitro. TLR9 stimulated neutrophil activation. HCQ in FGR rats resulted in changes in the abundance of Eubacterium_coprostanoligenes_group at the family level and the abundance of Eubacterium_coprostanoligenes_group and Bacteroides at the genus level. TLR9 and associated inflammatory factors were correlated with Bacteroides, Prevotella, Streptococcus, and Prevotellaceae_Ga6A1_group. FMT from FGR rats interfered with the therapeutic effects of HCQ. In conclusion, our findings suggest that TLR9 regulates the inflammatory response and gut microbiota structure in FGR, providing new insights into the pathogenesis of FGR and suggesting potential therapeutic interventions.

Morin Hydrate Inhibits Influenza Virus entry into Host Cells and Has Anti-inflammatory Effect in Influenza-infected Mice

  • Eun-Hye Hong;Jae-Hyoung Song;Seong-Ryeol Kim;Jaewon Cho;Birang Jeong;Heejung Yang;Jae-Hyeon Jeong;Jae-Hee Ahn;Hyunjin Jeong;Seong-Eun Kim;Sun-Young Chang;Hyun-Jeong Ko
    • IMMUNE NETWORK
    • /
    • v.20 no.4
    • /
    • pp.32.1-32.15
    • /
    • 2020
  • Influenza virus is the major cause of seasonal and pandemic flu. Currently, oseltamivir, a potent and selective inhibitor of neuraminidase of influenza A and B viruses, is the drug of choice for treating patients with influenza virus infection. However, recent emergence of oseltamivir-resistant influenza viruses has limited its efficacy. Morin hydrate (3,5,7,2',4'-pentahydroxyflavone) is a flavonoid isolated from Morus alba L. It has antioxidant, anti-inflammatory, neuroprotective, and anticancer effects partly by the inhibition of the NF-κB signaling pathway. However, its effects on influenza virus have not been studied. We evaluated the antiviral activity of morin hydrate against influenza A/Puerto Rico/8/1934 (A/PR/8; H1N1) and oseltamivir-resistant A/PR/8 influenza viruses in vitro. To determine its mode of action, we carried out time course experiments, and time of addition, hemolysis inhibition, and hemagglutination assays. The effects of the co-administration of morin hydrate and oseltamivir were assessed using the murine model of A/PR/8 infection. We found that morin hydrate reduced hemagglutination by A/PR/8 in vitro. It alleviated the symptoms of A/PR/8-infection, and reduced the levels of pro-inflammatory cytokines and chemokines, such as TNF-α and CCL2, in infected mice. Co-administration of morin hydrate and oseltamivir phosphate reduced the virus titers and attenuated pulmonary inflammation. Our results suggest that morin hydrate exhibits antiviral activity by inhibiting the entry of the virus.

Cyclic Phytosphingosine-1-Phosphate Primed Mesenchymal Stem Cells Ameliorate LPS-Induced Acute Lung Injury in Mice

  • Youngheon Park;Jimin Jang;Jooyeon Lee;Hyosin Baek;Jaehyun Park;Sang-Ryul Cha;Se Bi Lee;Sunghun Na;Jae-Woo Kwon;Seok-Ho Hong;Se-Ran Yang
    • International Journal of Stem Cells
    • /
    • v.16 no.2
    • /
    • pp.191-201
    • /
    • 2023
  • Background and Objectives: O-cyclic phytosphingosine-1-phosphate (cP1P) is a synthetic chemical and has a structure like sphingosine-1-phosphate (S1P). S1P is known to promote cell migration, invasion, proliferation, and anti-apoptosis through hippocampal signals. However, S1P mediated cellular-, molecular mechanism is still remained in the lung. Acute lung injury (ALI) and its severe form acute respiratory distress syndrome (ARDS) are characterized by excessive immune response, increased vascular permeability, alveolar-peritoneal barrier collapse, and edema. In this study, we determined whether cP1P primed human dermal derived mesenchymal stem cells (hdMSCs) ameliorate lung injury and its therapeutic pathway in ALI mice. Methods and Results: cP1P treatment significantly stimulated MSC migration and invasion ability. In cytokine array, secretion of vascular-related factors was increased in cP1P primed hdMSCs (hdMSCcP1P), and cP1P treatment induced inhibition of Lats while increased phosphorylation of Yap. We next determined whether hdMSCcP1P reduce inflammatory response in LPS exposed mice. hdMSCcP1P further decreased infiltration of macrophage and neutrophil, and release of TNF-α, IL-1β, and IL-6 were reduced rather than naïve hdMSC treatment. In addition, phosphorylation of STAT1 and expression of iNOS were significantly decreased in the lungs of MSCcP1P treated mice. Conclusions: Taken together, these data suggest that cP1P treatment enhances hdMSC migration in regulation of Hippo signaling and MSCcP1P provide a therapeutic potential for ALI/ARDS treatment.

Anti-inflammatory effects of biorenovated Torreya nucifera extract in RAW264.7 cells induced by Cutibacterium acnes (여드름균에 의해 유도된 RAW264.7 세포에서 생물 전환된 비자나무 추출물의 항염증 효과)

  • Hyehyun Hong;Tae-Jin Park;Yu-Jung Lee;Byeong Min Choi;Seung-Young Kim
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.213-220
    • /
    • 2023
  • The most common skin disease, acne, often occurs in adolescence, but it is also detected/observed in adults due to air pollution and drug abuse. One of the causative agents of acne, Cutibacterium acnes (C. acnes) plays a role in the development of skin acne by inducing inflammatory mediators. Torreya nucifera (TN) is an evergreen tree of the family Taxaceae, having well reported antioxidant, anti-proliferative, liver protection, and nerve protection properties. Improvement of these bioactive properties of natural products is one of the purposes of natural product chemistry and pharmaceuticals. We believe biorenovation could be one improvement strategy that utilizes microbial metabolism to produce unique derivatives having enhanced bioactivity. Therefore, in this study, the C. acnes-induced RAW264.7 inflammation model was used to evaluate the anti-inflammatory activity of the biorenovated Torreya nucifera product (TNB). The results showed improved viability of TNB-treated cells compared to TN-treated cells in the concentration range of 50, 100, and 200 ㎍/mL. At non-toxic concentrations, TNB inhibited the production of nitric oxide and prostaglandin E2 by suppression of inducible nitric oxide synthase and cyclooxygenase-2 protein expression. TNB also attenuated the expression of interleukin-1β, interleukin-6, interleukin-8, and tumor necrosis factor-α induced by C. acnes. Furthermore, TNB inhibited the nuclear factor-κB signaling pathway, a transcription factor known to regulate inflammatory mediators. Based on these results, this study suggests the potential of using TNB as natural material for the treatment of acnes and thus, supporting our postulation of biorenovation as an bioactivity improvement strategy.