Browse > Article
http://dx.doi.org/10.14348/molcells.2020.2193

Inhibitory Role of TRIP-Br1/XIAP in Necroptosis under Nutrient/Serum Starvation  

Sandag, Zolzaya (Department of Biological Science, Sookmyung Women's University)
Jung, Samil (Department of Biological Science, Sookmyung Women's University)
Quynh, Nguyen Thi Ngoc (Department of Biological Science, Sookmyung Women's University)
Myagmarjav, Davaajargal (Department of Biological Science, Sookmyung Women's University)
Anh, Nguyen Hai (Department of Biological Science, Sookmyung Women's University)
Le, Dan-Diem Thi (Department of Biological Science, Sookmyung Women's University)
Lee, Beom Suk (Department of Biological Science, Sookmyung Women's University)
Mongre, Raj Kumar (Department of Biological Science, Sookmyung Women's University)
Jo, Taeyeon (Department of Biological Science, Sookmyung Women's University)
Lee, MyeongSok (Department of Biological Science, Sookmyung Women's University)
Abstract
Currently, many available anti-cancer therapies are targeting apoptosis. However, many cancer cells have acquired resistance to apoptosis. To overcome this problem, simultaneous induction of other types of programmed cell death in addition to apoptosis of cancer cells might be an attractive strategy. For this purpose, we initially investigated the inhibitory role of TRIP-Br1/XIAP in necroptosis, a regulated form of necrosis, under nutrient/serum starvation. Our data showed that necroptosis was significantly induced in all tested 9 different types of cancer cell lines in response to prolonged serum starvation. Among them, necroptosis was induced at a relatively lower level in MCF-7 breast cancer line that was highly resistant to apoptosis than that in other cancer cell lines. Interestingly, TRIP-Br1 oncogenic protein level was found to be very high in this cell line. Up-regulated TRIP-Br1 suppressed necroptosis by repressing reactive oxygen species generation. Such suppression of necroptosis was greatly enhanced by XIAP, a potent inhibitor of apoptosis. Our data also showed that TRIP-Br1 increased XIAP phosphorylation at serine87, an active form of XIAP. Our mitochondrial fractionation data revealed that TRIP-Br1 protein level was greatly increased in the mitochondria upon serum starvation. It suppressed the export of CypD, a vital regulator in mitochondria-mediated necroptosis, from mitochondria to cytosol. TRIP-Br1 also suppressed shikonin-mediated necroptosis, but not TNF-α-mediated necroptosis, implying possible presence of another signaling pathway in necroptosis. Taken together, our results suggest that TRIP-Br1/XIAP can function as onco-proteins by suppressing necroptosis of cancer cells under nutrient/serum starvation.
Keywords
necroptosis; programmed cell death; TRIP-Br1; XIAP;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Teng, X., Degterev, A., Jagtap, P., Xing, X., Choi, S., Denu, R., Yuan, J., and Cuny, G.D. (2005). Structure-activity relationship study of novel necroptosis inhibitors. Bioorg. Med. Chem. Lett. 15, 5039-5044.   DOI
2 Tsujimoto, Y. and Shimizu, S. (2007). Role of the mitochondrial membrane permeability transition in cell death. Apoptosis 12, 835-840.   DOI
3 Van Themsche, C., Leblanc, V., Parent, S., and Asselin, E. (2009). X-linked inhibitor of apoptosis protein (XIAP) regulates PTEN ubiquitination, content, and compartmentalization. J. Biol. Chem. 284, 20462-20466.   DOI
4 Vandenabeele, P., Galluzzi, L., Vanden Berghe, T., and Kroemer, G. (2010). Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat. Rev. Mol. Cell Biol. 11, 700-714.   DOI
5 Vaseva, A.V., Marchenko, N.D., Ji, K., Tsirka, S.E., Holzmann, S., and Moll, U.M. (2012). P53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell 149, 1536-1548.   DOI
6 Wang, H., Sun, L., Su, L., Rizo, J., Liu, L., Wang, L.F., Wang, F.S., and Wang, X. (2014). Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol. Cell 54, 133-146.   DOI
7 Wang, Z., Jiang, H., Chen, S., Du, F., and Wang, X. (2012). The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell 148, 228-243.   DOI
8 Wang, Z., Kishimoto, H., Bhat-Nakshatri, P., Crean, C., and Nakshatri, H. (2005). $TNF{\alpha}$ resistance in MCF-7 breast cancer cells is associated with altered subcellular localization of p21CIP1and p27KIP1[4]. Cell Death Differ. 12, 98-100.   DOI
9 Dan, H.C., Sun, M., Kaneko, S., Feldman, R.I., Nicosia, S.V., Wang, H.G., Tsang, B.K., and Cheng, J.Q. (2004). Akt phosphorylation and stabilization of X-linked inhibitor of apoptosis protein (XIAP). J. Biol. Chem. 279, 5405-5412.   DOI
10 Xu, Y.Z., Kanagaratham, C., Youssef, M., and Radzioch, D. (2016). New frontiers in cancer chemotherapy: targeting cell death pathways. In Cell Biology: New Insights, S. Najman, ed. (Rijeka, Croatia: InTech), pp. 93-140.
11 Dasgupta, A., Nomura, M., Shuck, R., and Yustein, J. (2017). Cancer's Achilles' heel: apoptosis and necroptosis to the rescue. Int. J. Mol. Sci. 18, 1-20.   DOI
12 Dashzeveg, N. and Yoshida, K. (2015). Cell death decision by p53 via control of the mitochondrial membrane. Cancer Lett. 367, 108-112.   DOI
13 Duckett, C.S., Li, F., Wang, Y., Tomaselli, K.J., Thompson, C.B., and Armstrong, R.C. (1998). Human Iap-like protein regulates programmed cell death downstream of Bcl-X(L) and cytochrome C. Mol. Cell. Biol. 18, 608-615.   DOI
14 De Almagro, M.C. and Vucic, D. (2015). Necroptosis: pathway diversity and characteristics. Semin. Cell Dev. Biol. 39, 56-62.   DOI
15 Deveraux, Q.L., Leo, E., Stennicke, H.R., Welsh, K., Salvesen, G.S., Reed, J.C., Boldin, M., Goncharov, T., Goltsev, Y., Wallach, D., et al. (1999). Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. EMBO J. 18, 5242-5251.   DOI
16 Dondelinger, Y., Hulpiau, P., Saeys, Y., Bertrand, M.J.M., and Vandenabeele, P. (2016). An evolutionary perspective on the necroptotic pathway. Trends Cell Biol. 26, 721-732.   DOI
17 Eigenbrod, T., Park, J.H., Harder, J., Iwakura, Y., and Nunez, G. (2008). Cutting edge: critical role for mesothelial cells in necrosis-induced inflammation through the recognition of IL-1 alpha released from dying cells. J. Immunol. 181, 8194-8198.   DOI
18 Geou-Yarh Liou, P.S. (2010). Reactive oxygen species in cancer. Free Radic. Res. 44, 47-49.   DOI
19 Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D.M., Forman, D., and Bray, F. (2015). Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136, E359-E386.   DOI
20 Fulda, S. (2013). The mechanism of necroptosis in normal and cancer cells. Cancer Biol. Ther. 14, 999-1004.   DOI
21 Hanahan, D. and Weinberg, R.A. (2011). Hallmarks of cancer: the next generation. Cell 144, 646-674.   DOI
22 Gonzalez-Juarbe, N., Gilley, R.P., Hinojosa, C.A., Bradley, K.M., Kamei, A., Gao, G., Dube, P.H., Bergman, M.A., and Orihuela, C.J. (2015). Pore-forming toxins induce macrophage necroptosis during acute bacterial pneumonia. PLoS Pathog. 11, 1-23.
23 Halestrap, A.P. (2009). Mitochondria and reperfusion injury of the heart-A holey death but not beyond salvation. J. Bioenerg. Biomembr. 41, 113-121.   DOI
24 Han, W., Li, L., Qiu, S., Lu, Q., Pan, Q., Gu, Y., Luo, J., and Hu, X. (2007). Shikonin circumvents cancer drug resistance by induction of a necroptotic death. Mol. Cancer Ther. 6, 1641-1649.   DOI
25 He, S., Wang, L., Miao, L., Wang, T., Du, F., Zhao, L., and Wang, X. (2009). Receptor interacting protein Kinase-3 determines cellular necrotic response to TNF-${\alpha}$. Cell 137, 1100-1111.   DOI
26 Hong, S.W., Kim, C.J., Park, W.S., Shin, J.S., Lee, S.D., Ko, S.G., Jung, S.I., Park, I.C., An, S.K., Lee, W.K., et al. (2009). p34SEI-1 inhibits apoptosis through the stabilization of the X-linked inhibitor of apoptosis protein: p34SEI-1 as a novel target for anti-breast cancer strategies. Cancer Res. 69, 741-746.   DOI
27 Jouan-Lanhouet, S., Riquet, F., Duprez, L., Vanden Berghe, T., Takahashi, N., and Vandenabeele, P. (2014). Necroptosis, in vivo detection in experimental disease models. Semin. Cell Dev. Biol. 35, 2-13.   DOI
28 Hong, S.W., Shin, J.S., Lee, Y.M., Kim, D.G., Lee, S.Y., Yoon, D.H., Jung, S.Y., Hwang, J.J., Lee, S.J., Cho, D.H., et al. (2011). p34SEI-1 inhibits ROS-induced cell death through suppression of ASK1. Cancer Biol. Ther. 12, 421-426.   DOI
29 Hsu, S.I.H., Yang, C.M., Sim, K.G., Hentschel, D.M., O'leary, E., and Bonventre, J.V. (2001). TRIP-Br: a novel family of PHD zinc finger- and bromodomain-interacting proteins that regulate the transcriptional activity of E2F-1/DP-1. EMBO J. 20, 2273-2285.   DOI
30 Izuishi, K., Kato, K., Ogura, T., Kinoshita, T., and Esumi, H. (2000). Remarkable tolerance of tumor cells to nutrient deprivation: possible new biochemical target for cancer therapy. Cancer Res. 60, 6201-6207.
31 Jung, S., Li, C., Duan, J., Lee, S., Kim, K., Park, Y., Yang, Y., Kim, K., Lim, J., Cheon, C., et al. (2015). TRIP-Br1 oncoprotein inhibits autophagy, apoptosis, and necroptosis under nutrient/serum-deprived condition. Oncotarget 6, 29060-29075.   DOI
32 Jung, S., Li, C., Jeong, D., Lee, S., Ohk, J., Park, M., Han, S., Duan, J., Kim, C., Yang, Y., et al. (2013). Oncogenic function of p34SEI-1 via NEDD4-1-mediated PTEN ubiquitination/degradation and activation of the PI3K/AKT pathway. Int. J. Oncol. 43, 1587-1595.   DOI
33 Jung, S., Ohk, J., Jeong, D., Li, C., Lee, S., Duan, J., Kim, C., Lim, J.S., Yang, Y., Kim, K.I.L., et al. (2014). Distinct regulatory effect of the p34SEI- 1oncoprotein on cancer metastasis in HER2/neu-positive and -negative cells. Int. J. Oncol. 45, 189-196.   DOI
34 Kaczmarek, A., Vandenabeele, P., and Krysko, D.V. (2013). Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 38, 209-223.   DOI
35 Montero, J., Dutta, C., Van Bodegom, D., Weinstock, D., and Letai, A. (2013). P53 regulates a non-apoptotic death induced by ROS. Cell Death Differ. 20, 1465-1474.   DOI
36 Lindqvist, L.M., Heinlein, M., Huang, D.C.S., and Vaux, D.L. (2014). Prosurvival Bcl-2 family members affect autophagy only indirectly, by inhibiting Bax and Bak. Proc. Natl. Acad. Sci. U. S. A. 111, 8512-8517.   DOI
37 Aharoni-Simon, M., Shumiatcher, R., Yeung, A., Shih, A.Z.L., Dolinsky, V.W., Doucette, C.A., and Luciani, D.S. (2016). Bcl-2 regulates reactive oxygen species signaling and a redox-sensitive mitochondrial proton leak in mouse pancreatic ${\beta}$-cells. Endocrinology 157, 2270-2281.   DOI
38 Marchi, S., Giorgi, C., Suski, J.M., Agnoletto, C., Bononi, A., Bonora, M., De Marchi, E., Missiroli, S., Patergnani, S., Poletti, F., et al. (2012). Mitochondria-ROS crosstalk in the control of cell death and aging. J. Signal Transduct. 2012, 1-17.
39 Marshall, K.D. and Baines, C.P. (2014). Necroptosis: is there a role for mitochondria? Front. Physiol. 5, 1-5.   DOI
40 Mizutani, Y., Nakanishi, H., Li, Y.N., Matsubara, H., Yamamoto, K., Sato, N., Shiraishi, T., Nakamura, T., Mikami, K., Okihara, K., et al. (2007). Overexpression of XIAP expression in renal cell carcinoma predicts a worse prognosis. Int. J. Oncol. 30, 919-925.
41 Moriwaki, K., Bertin, J., Gough, P.J., Orlowski, G.M., and Chan, F.K. (2015). Differential roles of RIPK1 and RIPK3 in TNF-induced necroptosis and chemotherapeutic agent-induced cell death. Cell Death Dis. 6, e1636.   DOI
42 Newton, K. and Manning, G. (2016). Necroptosis and inflammation. Annu. Rev. Biochem. 85, 743-763.   DOI
43 Nikoletopoulou, V., Markaki, M., Palikaras, K., and Tavernarakis, N. (2013). Crosstalk between apoptosis, necrosis and autophagy. Biochim. Biophys. Acta - Mol. Cell Res. 1833, 3448-3459.   DOI
44 Pasparakis, M. and Vandenabeele, P. (2015). Necroptosis and its role in inflammation. Nature 517, 311-320.   DOI
45 Lee, S.L.O., Hong, S.W., Shin, J.S., Kim, J.S., Ko, S.G., Hong, N.J., Kim, D.J., Lee, W.J., Jin, D.H., and Lee, M.S. (2009). p34SEI-1 inhibits doxorubicin-induced senescence through a pathway mediated by protein kinase C-delta and c-Jun-NH2-kinase 1 activation in human breast cancer MCF7 cells. Mol. Cancer Res. 7, 1845-1853.   DOI
46 Karch, J., Kwong, J.Q., Burr, A.R., Sargent, M.A., Elrod, J.W., Peixoto, P.M., Martinez-Caballero, S., Osinska, H., Cheng, E.H.Y., Robbins, J., et al. (2013). Bax and Bak function as the outer membrane component of the mitochondrial permeability pore in regulating necrotic cell death in mice. Elife 2013, 1-21.
47 Kato, K., Tanaka, T., Sadik, G., Baba, M., Maruyama, D., Yanagida, K., Kodama, T., Morihara, T., Tagami, S., OKOCHI, M., et al. (2011). Protein kinase C stabilizes X-linked inhibitor of apoptosis protein (XIAP) through phosphorylation at Ser87 to suppress apoptotic cell death. Psychogeriatrics 11, 90-97.   DOI
48 Lee, S., Kim, J., Jung, S., Li, C., Yang, Y., Kim, K. I., Lim, J.S., Kim, Y., Cheon, C. Il, and Lee, M.S. (2015). SIAH1-induced p34SEI-1polyubiquitination/degradation mediates p53 preferential vitamin C cytotoxicity. Int. J. Oncol. 46, 1377-1384.   DOI
49 Li, C., Jung, S., Lee, S., Jeong, D., Yang, Y., Kim, K.I., Lim, J., Cheon, C., Kim, C., and Lee, M. (2015). Nutrient/serum starvation derived TRIP-Br3 downregulation accelerates apoptosis by destabilizing XIAP. Oncotarget 6, 7522-7535.   DOI
50 Riedl, S.J., Renatus, M., Schwarzenbacher, R., Zhou, Q., Sun, C., Fesik, S.W., Liddington, R.C., and Salvesen, G.S. (2001). Structural basis for the inhibition of caspase-3 by XIAP. Cell 104, 791-800.   DOI
51 Su, Z., Yang, Z., Xie, L., DeWitt, J.P., and Chen, Y. (2016). Cancer therapy in the necroptosis era. Cell Death Differ. 23, 748-756.   DOI
52 Lin, Y., Choksi, S., Shen, H.M., Yang, Q.F., Hur, G.M., Kim, Y.S., Tran, J.H., Nedospasov, S.A., and Liu, Z.G. (2004).Tumor necrosis factor-induced nonapoptotic cell death requires receptor-interacting protein-mediated cellular reactive oxygen species accumulation. J. Biol. Chem. 279, 10822-10828.   DOI
53 Karch, J., Kanisicak, O., Brody, M.J., Sargent, M.A., Michael, D.M., and Molkentin, J.D. (2015). Necroptosis interfaces with MOMP and the MPTP in mediating cell death. PLoS One 10, 1-12.
54 Belizario, J., Vieira-Cordeiro, L., and Enns, S. (2015). Necroptotic cell death signaling and execution pathway: lessons from knockout mice. Mediators Inflamm. 2015, 128076.   DOI
55 Berezovskaya, O., Schimmer, A.D., Glinskii, A.B., Pinilla, C., Hoffman, R.M., Reed, J.C., and Glinsky, G.V. (2005). Increased expression of apoptosis inhibitor protein XIAP contributes to anoikis resistance of circulating human prostate cancer metastasis precursor cells increased expression of apoptosis inhibitor protein XIAPcontributes to anoikis resistance of circul. Cancer Res. 65, 2378-2386.   DOI
56 Berghe, T., Vanden, Linkermann, A., Jouan-Lanhouet, S., Walczak, H., and Vandenabeele, P. (2014). Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat. Rev. Mol. Cell Biol. 15, 135-147.   DOI
57 Rohde, K., Kleinesudeik, L., Roesler, S., Lowe, O., Heidler, J., Schroder, K., Wittig, I., Drose, S., and Fulda, S. (2017). A Bak-dependent mitochondrial amplification step contributes to Smac mimetic/glucocorticoid-induced necroptosis. Cell Death Differ. 24, 83-97.   DOI
58 Shiozaki, E.N., Chai, J., Rigotti, D.J., Riedl, S.J., Li, P., Srinivasula, S.M., Alnemri, E.S., Fairman, R., and Shi, Y. (2003). Mechanism of XIAP-mediated inhibition of caspase-9. Mol. Cell 11, 519-527.   DOI
59 Su, Z., Yang, Z., Xu, Y., Chen, Y., and Yu, Q. (2015). Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol. Cancer 14, 48.   DOI
60 Sugimoto, M., Nakamura, T., Ohtani, N., Hampson, L., Hampson, I.N., Shimamoto, A., Furuichi, Y., Okumura, K., Niwa, S., Taya, Y., et al. (1999). Regulation of CDK4 activity by a novel CDK4-binding protein, p34(SEI-1). Genes Dev. 13, 3027-3033.   DOI
61 Tang, D.J., Hu, L., Xie, D., Wu, Q.L., Fang, Y., Zeng, Y., Sham, J.S.T., and Guan, X.Y. (2005). Oncogenic transformation by SEI-1 is associated with chromosomal instability. Cancer Res. 65, 6504-6508.   DOI
62 Redza-Dutordoir, M. and Averill-Bates, D.A. (2016). Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta - Mol. Cell Res. 1863, 2977-2992.   DOI
63 Chan, F.K.-M., Luz, N.F., and Moriwaki, K. (2015). Programmed necrosis in the cross talk of cell death and inflammation. Annu. Rev. Immunol. 33, 79-106.   DOI
64 Bernardi, P., Krauskopf, A., Basso, E., Petronilli, V., Blalchy-Dyson, E., Di Lisa, F., and Forte, M.A. (2006). The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J. 273, 2077-2099.   DOI
65 Cai, Z., Jitkaew, S., Zhao, J., Chiang, H.C., Choksi, S., Liu, J., Ward, Y., Wu, L.G., and Liu, Z.G. (2014). Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat. Cell Biol. 16, 55-65.   DOI
66 Chai, J., Shiozaki, E., Srinivasula, S.M., Wu, Q., Datta, P., Alnemri, E.S., and Shi, Y. (2001). Structural basis of caspase-7 inhibition by XIAP. Cell 104, 769-780.   DOI
67 Christofferson, D.E. and Yuan, J. (2010). Cyclophilin a release as a biomarker of necrotic cell death. Cell Death Differ. 17, 1942-1943.   DOI
68 Tang, T.C., Sham, J.S.T., Xie, D., Cancer, O., and Lines, C. (2002). Identification of a Candidate Oncogene SEI-1 within a minimal amplified region at 19q13.1 in ovarian cancer cell lines advances in brief identification of a candidate oncogene SEI-1 within a minimal amplified region. Cancer Res. 62, 7157-7161.