• Title/Summary/Keyword: TNF signaling

Search Result 415, Processing Time 0.03 seconds

Distinct Differences between TNF Receptor 1- and TNF Receptor 2- mediated Activation of NFκB

  • Thommesen, Liv;Laegreid, Astrid
    • BMB Reports
    • /
    • v.38 no.3
    • /
    • pp.281-289
    • /
    • 2005
  • Tumor necrosis factor (TNF) signaling is mediated via two distinct receptors, TNFR2 and TNFR1, which shows partially overlapping signaling mechanisms and biological roles. In the present study, TNFR2 and TNFR1 signal transduction mechanisms involved in activation of $NF{\kappa}B$ and CMV promoter-enhancer were compared with respect to their susceptibility towards inhibitors of intracellular signaling. For this, we used SW480 cells, where we have shown that TNF-signaling can occur independently through each of the two receptors. The TNFR1 response was inhibited by D609, bromophenacyl bromide (BPB), nordihydroguararetic acid (NDGA), and by sodium salicylate, while TNFR2-mediated activation of $NF{\kappa}B$ and CMV promoter-enhancer was resistant to these compounds. The signaling mechanisms known to be affected by these inhibitors include phospholipases as well as redox- and pH-sensitive intracellular components. Our results imply that TNFR2 signaling involved in $NF{\kappa}B$ activation proceeds independently of these inhibitor-sensitive signaling components, indicating distinct signaling pathways not shared with TNFR1.

Structural and Functional Roles of AIMP2 and TRAF2 in TNF-α Signaling (TNF-α 신호에서 AIMP2와 TRAF2의 구조적 및 기능적 역할)

  • Kim, Hyeon Jin;Jeong, Mi Suk;Jang, Se Bok
    • Journal of Life Science
    • /
    • v.30 no.1
    • /
    • pp.106-112
    • /
    • 2020
  • Aminoacyl tRNA synthetase complex interacting multifunctional protein 2 (AIMP2) is a scaffolding protein required for the assembly of multi-tRNA synthetase, and it can exert pro-apoptotic activity in response to DNA damage. In the presence of DNA damage, AIMP2 binds to mouse double minute 2 homolog (MDM2) to protect p53 from MDM2 attack. TGF-β signaling results in the nuclear translocation of AIMP2, whereby AIMP2 interacts with FUSE-binding protein, and, thus, suppresses c-myc. TNF receptor-associated factor 2 (TRAF2) is an important mediator between TNF-receptors 1 and 2 which are involved in the signaling of c-Jun N-terminal kinase (JNK), nuclear factor κB (NF-κB), and p38 mitogen-activated protein kinases (MAPKs). TRAF2 is required for the activations of JNK and NF-κB via TNF-α and the mediation of anti-apoptosis signaling. AIMP2 can also enhance pro-apoptosis in the TNF-α signaling. During this signaling, AIMP2 assists the association of E3 ubiquitin ligase, the cellular inhibitor of apoptosis protein 1 (c-IAP1) which is well known and responsible for the degradation of TRAF2. The formation of a complex among AIMP2, TRAF2, and c-IAP1 results in proteasome-mediated TRAF2 degradation. AIMP2 can induce apoptosis via downregulation of TRAF2 to interact directly in TNF-α signaling. This review provides new insight into the molecular mechanism responsible for AIMP2 and TRAF2 complex formation and treatments for TNFα-associated diseases.

Phagocytic Effects of β-Glucans from the Mushroom Coriolus versicolor are Related to Dectin-1, NOS, TNF-α Signaling in Macrophages

  • Jang, Seon-A;Kang, Se-Chan;Sohn, Eun-Hwa
    • Biomolecules & Therapeutics
    • /
    • v.19 no.4
    • /
    • pp.438-444
    • /
    • 2011
  • The mushroom Coriolus versicolor contains biologically active polysaccharides, most of which belong to the ${\beta}$-glucan group. Diverse physicochemical properties, due to different sources and isolated types of ${\beta}$-glucans, can induce distinct biological activities. We investigated the effects of ${\beta}$-glucans from C. versicolor on phagocytic activity, nitric oxide (NO), TNF-${\alpha}$ production, and signaling of dectin-1, a well-known ${\beta}$-glucan receptor, in macrophages. ${\beta}$-Glucans increased phagocytic activity and TNF-${\alpha}$ and NO-iNOS/eNOS production. Laminarin, a specific inhibitor of dectin-1, showed strong inhibitory effects on phagocytosis and subsequent TNF-${\alpha}$, iNOS, and eNOS production increased by ${\beta}$-glucans, indicating that ${\beta}$-glucans reacts with dectin-1 receptors. We examined whether the aforementioned cytokines were involved in the signaling pathway from the dectin-1 receptor to phagocytosis, and found that the inhibition of iNOS, eNOS, and TNF-${\alpha}$ receptors significantly decreased ${\beta}$-glucan-induced phagocytosis. In conclusion, our study showed that dectin-1 signaling, triggered by ${\beta}$-glucans, subsequently elicited TNF-${\alpha}$ and NO-iNOS/eNOS production, and that these molecules seem to act as secondary molecules that cause eventual phagocytosis by macrophages. These findings suggest that C. versicolor could be used as a nutritional medicine that may be useful in the treatment of infectious disease.

Redox Factor-1 Inhibits Cyclooxygenase-2 Expression via Inhibiting of p38 MAPK in the A549 Cells

  • Yoo, Dae-Goon;Kim, Cuk-Seong;Lee, Sang-Ki;Kim, Hyo-Shin;Cho, Eun-Jung;Park, Myoung-Soo;Lee, Sang-Do;Park, Jin-Bong;Jeon, Byeong-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.3
    • /
    • pp.139-144
    • /
    • 2010
  • In this study, we evaluated the role of apurinic/apyrimidinic endonuclease1/redox factor-1 (Ref-1) on the tumor necrosis factor-$\alpha$ (TNF-$\alpha$) induced cyclooxygenase-2 (COX-2) expression using A549 lung adenocarcinoma cells. TNF-$\alpha$ induced the expression of COX-2 in A549 cells, but did not induce BEAS-2B expression. The expression of COX-2 in A549 cells was TNF-$\alpha$ dose-dependent (5~100 ng/ml). TNF-$\alpha$-stimulated A549 cells evidenced increased Ref-1 expression in a dose-dependent manner. The adenoviral transfection of cells with AdRef-1 inhibited TNF-$\alpha$-induced COX-2 expression relative to that seen in the control cells ($Ad{\beta}gal$). Pretreatment with $10\;{\mu}M$ of SB203580 suppressed TNF-$\alpha$-induced COX-2 expression, thereby suggesting that p38 MAPK might be involved in COX-2 expression in A549 cells. The phosphorylation of p38 MAPK was increased significantly after 5 minutes of treatment with TNF-$\alpha$, reaching a maximum level at 10 min which persisted for up to 60 min. However, p38MAPK phosphorylation was markedly suppressed in the Ref-1-overexpressed A549 cells. Taken together, our results appear to indicate that Ref-1 negatively regulates COX-2 expression in response to cytokine stimulation via the inhibition of p38 MAPK phosphorylation. In the lung cancer cell lines, Ref-1 may be involved as an important negative regulator of inflammatory gene expression.

MAP Kinase Activation is Required for the MMP-9 Induction by TNF-Stimulation

  • Kim, Kyung-Chan;Lee, Chu-Hee
    • Archives of Pharmacal Research
    • /
    • v.28 no.11
    • /
    • pp.1257-1262
    • /
    • 2005
  • MMP-9 is a metalloproteinase capable of basement membrane degradation in vivo. Expression of MMP-9 can be found in normal conditions such as trophoblasts, osteoclasts, and leukocytes and their precursors. They also occur as well as in pathological conditions, such as the invasive growth of primary tumors, metastasis, angiogenesis, rheumatoid arthritis, and periodontal diseases. MMP-9 upregulation can be highly induced by a wide range of agents. These agents include growth factors, cytokines, cell-cell, and cell-ECM adhesion molecules, and agents altering cell shape. Here, we observed that TNF-$\alpha$ stimulated human monocytic cell line, HL-60 produced MMP-9 in a dose and time dependent manner. Real time PCR results indicated transcriptional upregulation of MMP-9 as early as 3 h post TNF-$\alpha$ stimulation. To investigate the signaling pathway underlined in TNF-$\alpha$ induced MMP-9 expression, three MAP kinase inhibitors were added to cells 1 h prior to TNF-$\alpha$ treatment. The ERK inhibitor completely abolished MMP-9 expression by TNF-$\alpha$. But neither p38 MAP kinase nor JNK inhibitor had an effect on TNF-$\alpha$ induced MMP-9 expression, suggesting that ERK activation is required for the MMP-9 induction by TNF-$\alpha$. Taken together, we found that TNF-$\alpha$ stimulation facilitates ERK activation, which results in the transcriptional upregulation of MMP-9 gene and subsequent MMP-9 production and secretion.

Parkin Induces MMP-3 Expression in Human Cervical Cancer Cells

  • Lee, Min Ho;Jung, Byung Chul;Jung, Bae Dong;Lee, In-Soo;Rhee, Ki-Jong;Kim, Yoon Suk
    • Biomedical Science Letters
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • Parkin is known to be a tumor suppressor protein. Previously, we determined that parkin expression restores susceptibility to TNF-${\alpha}$-induced death of HeLa cells, a human cervical cancer cell line resistant to TNF-${\alpha}$-induced cell death. MMP-3 is a zinc-dependent protease recently reported to activate intracellular apoptotic signaling. In this study we examined the regulation of MMP-3 expression by parkin in TNF-${\alpha}$-treated HeLa cells. Furthermore, we investigated the signaling pathway involved in parkin-induced expression of MMP-3. We found that HeLa cells exhibit low levels of MMP-3 but is induced after introduction of the parkin gene into HeLa cells. Furthermore, MMP-3 expression increased further when parkin expressing cells were treated with TNF-${\alpha}$. Using chemical inhibitors of cell signaling pathways, we found that MEK-1 (PD98059), PI3K (LY294002), p38 MAPK (SB203580), and JNK inhibitors alleviated parkin-induced up-regulation of MMP-3. Finally, we show that TNF-${\alpha}$-induced cell death in parkin expressing cells is inhibited by using a MMP-3 inhibitor. These results suggest that parkin expression induces prolonged expression of MMP-3 via MEK-1, PI3K, MAPK, and JNK pathway in HeLa cells allowing the HeLa cells to become sensitive to TNF-${\alpha}$-induced cell death. These results implicate a role of MMP-3 in parkin-induced cell death in TNF-${\alpha}$ treated HeLa cells.

Modulation of Life and Death by the Tumor Necrosis Factor Receptor-Associated Factors (TRAFs)

  • Lee, Na-Kyung;Lee, Soo-Young
    • BMB Reports
    • /
    • v.35 no.1
    • /
    • pp.61-66
    • /
    • 2002
  • The TNF receptor-associated factor (TRAF) family is a group of adapter proteins that link a wide variety of cell surface receptors. Including the TNF and IL-1 receptor superfamily to diverse signaling cascades, which lead to the activation of NF-${\kappa}B$ and mitogen-activated protein kinases. In addition, TRAFs interact with a variety of proteins that regulate receptor-induced cell death or survival. Thus, TRAF-mediated signals may directly induce cell survival or interfere with the death receptor-induced apoptosis.

Korean Red Ginseng Extract inhibits Tumor Necrosis Factor-alpha-induced Monocyte Adhesion in the Human Endothelial Cells

  • Joo, Hee-Kyoung;Lee, Sang-Ki;Kim, Hyo-Shin;Song, Yun-Jeong;Kang, Gun;Park, Jin-Bong;Lee, Kwon-Ho;Cho, Eun-Jung;Lee, Jae-Hwan;Seong, In-Whan;Kim, Se-Hoon;Cho, Chung-Hyun;Jeon, Byeong-Hwa
    • Journal of Ginseng Research
    • /
    • v.32 no.3
    • /
    • pp.244-249
    • /
    • 2008
  • Vascular inflammation is an important step in the development of cardiovascular disorder. Since it has not been known whether Korean red ginseng has a role to play on the vascular inflammation, we investigated the effects of Korean red ginseng extract (KRGE) on monocyte adhesion and its underlying signaling mechanism. Monocyte adhesion assay and Western blot were conducted on the human umbilical vein endothelial cells to study monocyte adhesion and the expression of adhesion molecules. Intracellular calcium was measured with Fura-2 fluorescent staining, and superoxide production was measured with lucigenin chemiluminescence in the endothelial cells. KRGE inhibits tumor necrosis factor (TNF)-alpha-induced monocyte adhesion on the endothelial cells at the range of $0.03{\sim}1$ mg/ml. TNF-alpha-induced vascular cell adhesion molecule-1 and intercellular cell adhesion molecule-1 expression were inhibited by the pretreatment of KRGE in the endothelial cells. KRGE also inhibits TNF-alpha-induced intracellular calcium and the superoxide production in the endothelial cells. This study first demonstrated that KRGE inhibits TNF-alpha-induced monocyte adhesion by inhibiting the adhesion molecule expression, intracellular calcium and superoxide production in the endothelial cells. Therefore, the anti-inflammatory function of KRGE may be contributed to protecting the endothelial dysfunction in the vascular inflammatory disorders.

β-catenin protein utilized by Tumour necrosis factor-α in porcine preadipocytes to suppress differentiation

  • Luo, Xiao;Li, Hui-Xia;Liu, Rong-Xin;Wu, Zong-Song;Yang, Ying-Juan;Yang, Gong-She
    • BMB Reports
    • /
    • v.42 no.6
    • /
    • pp.338-343
    • /
    • 2009
  • The Wnt/$\beta$-catenin signaling pathway alters adipocyte differentiation by inhibiting adipogenic gene expression. $\beta$-catenin plays a central role in the Wnt/$\beta$-catenin signaling pathway. In this study, we revealed that tumour necrosis factor-$\alpha$ (TNF-$\alpha$), a potential negative regulator of adipocyte differentiation, inhibits porcine adipogenesis through activation of the Wnt/$\beta$-catenin signaling pathway. Under the optimal concentration of TNF-$\alpha$, the intracellular $\beta$-catenin protein was stabilized. Thus, the intracellular lipid accumulation of porcine preadipocyte was suppressed and the expression of important adipocyte marker genes, including peroxisome proliferator-activated receptor-$\gamma$ (PPAR$\gamma$) and CCAAT/enhancer binding protein-$\alpha$ (C/EBP$\alpha$), were inhibited. However, a loss of $\beta$-catenin in porcine preadipocytes enhanced the adipogenic differentiation and attenuated TNF-$\alpha$ induced anti-adipogenesis. Taken together, this study indicated that TNF-$\alpha$ inhibits adipogenesis through stabilization of $\beta$-catenin protein in porcine preadipocytes.

Apigenin Inhibits Tumor Necrosis Factor-α-Induced Production and Gene Expression of Mucin through Regulating Nuclear Factor-Kappa B Signaling Pathway in Airway Epithelial Cells

  • Seo, Hyo-Seok;Sikder, Mohamed Asaduzzaman;Lee, Hyun Jae;Ryu, Jiho;Lee, Choong Jae
    • Biomolecules & Therapeutics
    • /
    • v.22 no.6
    • /
    • pp.525-531
    • /
    • 2014
  • In the present study, we investigated whether apigenin significantly affects tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$)-induced production and gene expression of MUC5AC mucin in airway epithelial cells. Confluent NCI-H292 cells were pretreated with apigenin for 30 min and then stimulated with TNF-${\alpha}$ for 24 h or the indicated periods. The MUC5AC mucin gene expression and mucin protein production were measured by reverse transcription - polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Apigenin significantly inhibited MUC5AC mucin production and down-regulated MUC5AC gene expression induced by TNF-${\alpha}$ in NCI-H292 cells. To elucidate the action mechanism of apigenin, effect of apigenin on TNF-${\alpha}$-induced nuclear factor kappa B (NF-${\kappa}B$) signaling pathway was also investigated by western blot analysis. Apigenin inhibited NF-${\kappa}B$ activation induced by TNF-${\alpha}$. Inhibition of inhibitory kappa B kinase (IKK) by apigenin led to the suppression of inhibitory kappa B alpha ($I{\kappa}B{\alpha}$) phosphorylation and degradation, p65 nuclear translocation. This, in turn, led to the down-regulation of MUC5AC protein production in NCI-H292 cells. Apigenin also has an influence on upstream signaling of IKK because it inhibited the expression of adaptor protein, receptor interacting protein 1 (RIP1). These results suggest that apigenin can regulate the production and gene expression of mucin through regulating NF-${\kappa}B$ signaling pathway in airway epithelial cells.