• 제목/요약/키워드: TNF receptor

검색결과 337건 처리시간 0.027초

Retroviral vector를 이용한 종양괴사인자 (TNF-$\alpha$) 유전자 이입 암세포에서 종양괴사인자 수용체의 발현 (The TNF Receptor Expressions in Cancer Cells Transfected with TNF-$\alpha$ cDNA Using Retroviral Vector)

  • 이혁표;유철규;김영환;심영수;한성구
    • Tuberculosis and Respiratory Diseases
    • /
    • 제44권6호
    • /
    • pp.1271-1284
    • /
    • 1997
  • 연구배경 : 종양괴사인자(tumor necrosis factor ; TNF)는 다양한 생물학적 기능을 가지고 있는 바, 그 중 생체 외에서 증명된 뚜렷한 항암 효과로 말미암아 최근 항암 유전자요법의 중요한 대상으로 관심을 모으고 있다. 현재 유전자 이입의 기술적 문제로 생체 외에서 암세포에 유전자 이입을 시행한 후 이를 다시 환자의 생체내로 이식하는 방법이 연구의 주종을 이루고 있다. 그러나 저자들의 과거의 연구를 포함한 여러 연구에서 TNF가 이입된 암세포는 TNF에 대해 내성을 보이는 것으로 증명되었고 이에는 새로이 방어 단백질을 합성하는 것이 관여할 것이라는 시사가 있었다. 이 획득내성의 기전을 밝히는 것이 종양생물학의 이해를 넓히고 보다 효과적인 항암 유전자요법을 개발하기위한 매우 중요한 과제로 생각된다.

  • PDF

HVEM is a TNF Receptor with Multiple Regulatory Roles in the Mucosal Immune System

  • Shui, Jr-Wen;Kronenberg, Mitchell
    • IMMUNE NETWORK
    • /
    • 제14권2호
    • /
    • pp.67-72
    • /
    • 2014
  • The herpes virus entry mediator (HVEM) is a member of the tumor necrosis factor receptor superfamily (TNFRSF), and therefore it is also known as TNFRSF14 or CD270 (1,2). In recent years, we have focused on understanding HVEM function in the mucosa of the intestine, particularly on the role of HVEM in colitis pathogenesis, host defense and regulation of the microbiota (2-4). HVEM is an unusual TNF receptor because of its high expression levels in the gut epithelium, its capacity to bind ligands that are not members of the TNF super family, including immunoglobulin (Ig) superfamily members BTLA and CD160, and its bi-directional functionality, acting as a signaling receptor or as a ligand for the receptor BTLA. Clinically, Hvem recently was reported as an inflammatory bowel disease (IBD) risk gene as a result of genome wide association studies (5,6). This suggests HVEM could have a regulatory role influencing the regulation of epithelial barrier, host defense and the microbiota. Consistent with this, using mouse models, we have revealed how HVEM is involved in colitis pathogenesis, mucosal host defense and epithelial immunity (3,7). Although further studies are needed, our results provide the fundamental basis for understanding why Hvem is an IBD risk gene, and they confirm that HVEM is a mucosal gatekeeper with multiple regulatory functions in the mucosa.

Molecules of the Tumor Necrosis Factor (TNF) Receptor and Ligand Superfamilies: Endless Stories

  • Kwon, Byung-Suk;Kwon, Byoung-Se
    • BMB Reports
    • /
    • 제32권5호
    • /
    • pp.419-428
    • /
    • 1999
  • Tumor necrosis factor (TNF) receptor members have unique structures composed of 2-4 cysteine - rich pseudorepeats in the extracellular domain. On ligation by trimeric ligand molecules, oligomerization of three receptor molecules occurs, which in turn activates the receptor and recruits intracellular signaling molecules to the cytoplasmic tail to initiate biological events. Recently, the numbers of tumor necrosis factor receptor and ligand family members have been rapidly expanding. Functional characterization of the new members has indicated redundant roles with other known members as well as provided insights into novel functions. In particular, identification of soluble decoy receptors which have the ability to bind multiple ligands highlights a complex control mechanism of immune responses by these molecules. Studies of the new members have also revealed that the TNF receptor and ligand family members play an important role in other than the immune system.

  • PDF

우유 단백질 유발성 장염 증후군의 병리 기전으로 세포 자멸사와 TNF-${\alpha}$, TRAIL receptor 1 (DR4)의 발현 증가 (Apoptosis and upregulation of TNF-${\alpha}$ and TRAIL receptor 1 (DR4) in the pathogenesis of food protein-induced enterocolitis syndrome)

  • 황진복;김상표;강유나;이성룡;서성일;권택규
    • Clinical and Experimental Pediatrics
    • /
    • 제53권4호
    • /
    • pp.525-531
    • /
    • 2010
  • 목 적: 융모 위축을 보이는 FPIES 환자의 소장 점막에는 TNF-${\alpha}$의 발현이 증가한다. TNF-${\alpha}$는 상피 세포의 세포 자렴사를 유발하는 것으로 알려져 있다. 저자들은 FPIES 병리생리의 특성을 알아보고자 십이지장 점막 조직에서 TNF family와 TNF-수용체 family의 세포 자멸사를 연구하였다. 방 법: 표준화된 경구 유발 시험을 통하여 FPIES로 진단된 15례의 환자와 5례의 대조군을 대상으로 연구하였다. 세포 자멸사를 확인하기 위하여 terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) 염색을 시행하였다. 세포 자멸의 기전을 알아 보기 위해 TNF family의 TNF-${\alpha}$, Fas ligand (FasL)와 TNF-수용체 family의 TNF-related apoptosis-including ligand (TRAIL) receptor 1 (DR4), TRAIL receptor 2 (DR5), Fas를 면역조직화학으로 염색하였다. 결 과: $TUNEL^+$ 세포는 대조군에 비하여 FPIES 환자군의 십이지장 점막에서 의미 있게 높게 발현하였다($P$=0.043). TNF-${\alpha}$ ($P$=0.0001)와 DR4 ($P$=0.003)도 대조군에 비하여 FPIES군에서 의미 있게 높게 발현하였다. FasL, Fas, DR5의 발현은 두 군 모두에서 낮았으며, 두 군간에 의미 있는 차이를 보이지도 않았다. 결 론: FPIES의 병리생리는 세포 자멸사에 의하여 발생하며, TNF-${\alpha}$의 발현과 DR4 경로가 세포 자멸사에서 중요한 역할을 하는 것으로 추정된다.

Modulation of Life and Death by the Tumor Necrosis Factor Receptor-Associated Factors (TRAFs)

  • Lee, Na-Kyung;Lee, Soo-Young
    • BMB Reports
    • /
    • 제35권1호
    • /
    • pp.61-66
    • /
    • 2002
  • The TNF receptor-associated factor (TRAF) family is a group of adapter proteins that link a wide variety of cell surface receptors. Including the TNF and IL-1 receptor superfamily to diverse signaling cascades, which lead to the activation of NF-${\kappa}B$ and mitogen-activated protein kinases. In addition, TRAFs interact with a variety of proteins that regulate receptor-induced cell death or survival. Thus, TRAF-mediated signals may directly induce cell survival or interfere with the death receptor-induced apoptosis.

몽고 마유에 함유된 사이토카인에 관한 연구 (A Study on Cytokines in the Mongolia Mare's Milk)

  • 신무호;남명수;배형철;아말사나룹산돌주;알탄체체그미시그;윤도영
    • 한국축산식품학회지
    • /
    • 제23권1호
    • /
    • pp.75-79
    • /
    • 2003
  • 본 연구는 몽고 마유에서 pro-inflammatory cytokine(IL-l$\beta$, IL-6, TNF-a, IL-18)과 IL-1 receptor accessory를 Western blotting방법으로 확인하여 기능성 식품과 의약품 소재로 이 용하기 위한 기초 자료를 얻고자 실시하였다. 몽고 마유의 4개군 모두에서 IL-1, TNF-a가 17 kD에서 확인되었다. IL-18은 6~7 kD에서 확인할 수 있었다. 그리고, IL-1 receptor accessory를 55 kD에서 확인하였다. 그러나 탈지분유(Difco) 에서는 IL-l$\beta$, TNF-a를 확인할 수 없었으나, IL-6는 탈지분유(Difco) 및 몽고 마유에서 모두 60 kD에서 확인하였다. 이 와 같이 몽고 마유는 다양한 cytokine을 함유하고 있어서 기능성 식품 및 의약품 소재로 이용가치가 있다고 사료된다.

Inhibitory Effect of Bee Venom Toxin on Lung Cancer NCI H460 Cells Growth Through Induction of Apoptosis via Death Receptor Expressions

  • Hur, Keun Young;Song, Ho Sueb
    • Journal of Acupuncture Research
    • /
    • 제31권1호
    • /
    • pp.121-130
    • /
    • 2014
  • Objectives : I investigated whether bee venom inhibit cell growth through enhancement of death receptor expressions in the human lung cancer cells, NCI-H460. Methods : Bee venom(1-5 ${\mu}g/ml$) inhibited the growth of NCI-H460 lung cancer cells by the induction of apoptotic cell death in a dose dependent manner. Results : Consistent with apoptotic cell death, expression of TNF-R1, TNF-R2, FAS, death receptors(DR) 3, 4, 5 and 6 was increased in the cells. Expression of DR downstream pro-apoptotic proteins including Caspase-8, -3, -9 was upregulated and Bax was concomitantly overwhelmed the expression of Bcl-2. NF-kB were inhibited by treatment with bee venom in NCI-H460 cells through TNF response change led by TNF-R1 and TNF-R2. Conclusions : These results suggest that bee venom should exert anti-tumor effect through induction of apoptotic cell death in NCI-H460 human lung cancer cells via enhancement of death receptor expression, and that bee venom could be a promising agent for preventing and treating lung cancer.

Structural insights of homotypic interaction domains in the ligand-receptor signal transduction of tumor necrosis factor (TNF)

  • Park, Young-Hoon;Jeong, Mi Suk;Jang, Se Bok
    • BMB Reports
    • /
    • 제49권3호
    • /
    • pp.159-166
    • /
    • 2016
  • Several members of tumor necrosis factor receptor (TNFR) superfamily that these members activate caspase-8 from death-inducing signaling complex (DISC) in TNF ligand-receptor signal transduction have been identified. In the extrinsic pathway, apoptotic signal transduction is induced in death domain (DD) superfamily; it consists of a hexahelical bundle that contains 80 amino acids. The DD superfamily includes about 100 members that belong to four subfamilies: death domain (DD), caspase recruitment domain (CARD), pyrin domain (PYD), and death effector domain (DED). This superfamily contains key building blocks: with these blocks, multimeric complexes are formed through homotypic interactions. Furthermore, each DD-binding event occurs exclusively. The DD superfamily regulates the balance between death and survival of cells. In this study, the structures, functions, and unique features of DD superfamily members are compared with their complexes. By elucidating structural insights of DD superfamily members, we investigate the interaction mechanisms of DD domains; these domains are involved in TNF ligand-receptor signaling. These DD superfamily members play a pivotal role in the development of more specific treatments of cancer.

Distinct Differences between TNF Receptor 1- and TNF Receptor 2- mediated Activation of NFκB

  • Thommesen, Liv;Laegreid, Astrid
    • BMB Reports
    • /
    • 제38권3호
    • /
    • pp.281-289
    • /
    • 2005
  • Tumor necrosis factor (TNF) signaling is mediated via two distinct receptors, TNFR2 and TNFR1, which shows partially overlapping signaling mechanisms and biological roles. In the present study, TNFR2 and TNFR1 signal transduction mechanisms involved in activation of $NF{\kappa}B$ and CMV promoter-enhancer were compared with respect to their susceptibility towards inhibitors of intracellular signaling. For this, we used SW480 cells, where we have shown that TNF-signaling can occur independently through each of the two receptors. The TNFR1 response was inhibited by D609, bromophenacyl bromide (BPB), nordihydroguararetic acid (NDGA), and by sodium salicylate, while TNFR2-mediated activation of $NF{\kappa}B$ and CMV promoter-enhancer was resistant to these compounds. The signaling mechanisms known to be affected by these inhibitors include phospholipases as well as redox- and pH-sensitive intracellular components. Our results imply that TNFR2 signaling involved in $NF{\kappa}B$ activation proceeds independently of these inhibitor-sensitive signaling components, indicating distinct signaling pathways not shared with TNFR1.

Tumor Necrosis Factor ${\alpha}$ up-regulates the Expression of beta2 Adrenergic Receptor via NF-${\kappa}B$-dependent Pathway in Osteoblasts

  • Baek, Kyunghwa;Kang, Jiho;Hwang, Hyo Rin;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • 제38권3호
    • /
    • pp.121-126
    • /
    • 2013
  • Tumor necrosis factor alpha ($TNF{\alpha}$) is a multifunctional inflammatory cytokine that regulates various cellular and biological processes. Increased levels of $TNF{\alpha}$ have been implicated in a number of human diseases including diabetes and arthritis. Sympathetic nervous system stimulation via the beta2-adrenergic receptor (${\beta}2AR$) in osteoblasts suppresses osteogenic activity. We previously reported that $TNF{\alpha}$ upregulates ${\beta}2AR$ expression in murine osteoblastic cells and that this modulation is associated with $TNF{\alpha}$ inhibition of osteoblast differentiation. In our present study, we explored whether $TNF{\alpha}$ induces ${\beta}2AR$ expression in human osteoblasts and then identified the downstream signaling pathway. Our results indicated that ${\beta}2AR$ expression was increased in Saos-2 and C2C12 cells by $TNF{\alpha}$ treatment, and that this increase was blocked by the inhibition of NF-${\kappa}B$ activation. Chromatin immunoprecipitation and luciferase reporter assay results indicated that NF-${\kappa}B$ directly binds to its cognate elements on the ${\beta}2AR$ promoter and thereby stimulates ${\beta}2AR$ expression. These findings suggest that the activation of $TNF{\alpha}$ signaling in osteoblastic cells leads to an upregulation of ${\beta}2AR$ and also that $TNF{\alpha}$ induces ${\beta}2AR$ expression in an NF-${\kappa}B$-dependent manner.