• Title/Summary/Keyword: TN grounding system

Search Result 12, Processing Time 0.021 seconds

Performance Evaluation of Protection against Electric Shocks for TT and TN Systems (TT, TN접지계통의 감전보호 성능평가)

  • Lee, Bok-Hee;Choi, Young-Chul;Yoo, Jae-Duk;Shin, Hee-Kyung;Yang, Soon-Man;Kim, Tae-Gi;Lee, Zu-Cheul
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.315-318
    • /
    • 2009
  • Electric shock is the accident caused by the current through a person or animal's body. That is characterized by the physiological effects. In this paper, we evaluate performance of protection against electric shocks for TT and TN grounding systems which are used by a low voltage consumer nowadays. The performance of protection against electric shocks for TT grounding system is very excellent in equipotential area of the third class grounding, but the performance is poor outside the equipotential area. The performance of protection against electric shocks for TN grounding system is excellent because the potential difference is less than 50V. Accordingly, the performance of protection for TN grounding system is good as compared with that for TT grounding System.

  • PDF

Problems and Improvement Method of Grounding System in Electrical Facilities (건축전기설비에 적용되는 접지시스템 문제점과 개선방안)

  • Chung, Young-Ki;Kwak, Hee-Ro;Shin, Hyo-Sub;Chung, Chun-Byoung;Nam, Taik-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.47-50
    • /
    • 2001
  • Presently the Korean grounding system uses TN system, multi-grounding method with TT independent grounding method. Nevertheless TN system can't exist with TT system in the technological terms. If they coexist, it causes ground-fault circuit not to operate, and brings about different electrical potential rise by customer system. It brings about serious problems for safety. This paper aims for improving method of grounding system based on the technical analysis on instances in foreign countries and Korea. Almost standards and construction manner were apt to be internationalized after WTO/TBT agreement was concluded. The internal grounding systems should meet the international criteria and reliability for safety, and be provided with technologically impeccable standards.

  • PDF

Protection ability for lightning surge according to the grounding system of low voltage power systems (저압 전원계통 접지방식별 뇌서지보호성능)

  • Lee, Bok-Hee;Lee, Gyu-Sun;Choi, Jong-Hyuk;Yoo, Yang-Woo;Kim, Dong-Sung;Kang, Sung-Man;Ann, Chang-Hwan
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.343-346
    • /
    • 2009
  • The grounding system of low voltage power systems is TT grounding system in Korea. In order to follow the international standard, TN grounding system is adopted. However, the performance of grounding systems has not been evaluated. This paper deals with the experimental results of protection ability of grounding system when lightning surge invades to the neutral line of low voltage power system. As a result, the TT grounding system is most frail for the lightning surge and it does not protect the electrical devices. On the other hand, the TN grounding system perfectly protects the electrical equipment and prevents the electric shock for human through the equipotential bonding. In case of TN system with supplement grounding, it is very important to lower the supplement grounding resistance to protect the electrical equipment and electric shock for human.

  • PDF

Modeling and Implementation of Safety Test Device for Grounding System Based on IEC 60364 (IEC 60364의 접지방식에 기반한 안전성 평가 시험장치의 모델링 및 구현에 관한 연구)

  • Kim, Soon-Sik;Han, Byeong-Gill;Lee, Hu-Dong;Ferreira, Marito;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.599-609
    • /
    • 2021
  • A novel grounding system, which is presented in IEC 60364, has been adopted since 2021. A safety evaluation for the human body on the grounding system is required due to the various characteristics of the touch voltage and current passing when the human body experiences an electric shock. The Korea Electrical Safety Corporation (KESCO) and Korea Electric Association (KEA) have been conducting a safety technical education on the grounding system. On the other hand, it is difficult to instruct the electrical safety manager because of a lack of safety evaluations for the test equipment on the grounding system. Therefore, this paper modeled and implemented a test device for a safety evaluation depending on the grounding system of IEC 60364. Namely, this paper presents the modeling of the test device for a safety evaluation using PSCAD/EMTDC S/W, which is composed of an AC grid section, s test device section on the grounding system, and a sub-device section. This paper implemented a test device for safety evaluation, which consisted of an AC grid section, TT grounding system section, TN-S grounding system section, and monitoring section. From the simulation and test results with the safety characteristics of the human body in the TT and TN-S grounding system, when the fault impedances are 0[Ω], 10[Ω], and 100[Ω], the currents passing through the human body in the TT grounding system are 104[mA], 87.4[mA], and 35.5[mA], respectively. The corresponding currents in the TN-S grounding system are 54.9[mA], 4.1[mA], and 0.4[mA], respectively. Based on the results, the protection performance for an electric shock to the human body in the TN-S system is better than the TT system. This can be improved when the existing grounding system is changed from the TT system to the TN-S system.

Problems and Inprovement Method of Grounding System in Electrical Facilities (건축전기설비에 적용되는 접지시스템 문제점과 개선방안)

  • Chung, Young-Ki;Kwak, Hee-Ro;Shin, Hyo-Sub;Chung, Chun-Byoung;Nam, Taik-Joo
    • Electric Engineers Magazine
    • /
    • v.228 no.8
    • /
    • pp.52-57
    • /
    • 2001
  • Presently the Korean grounding system uses TN system, multi-grounding method with IT independent grounding method. Nevertheless TN system can't exist with TT system in the technological terms. If they coexist, it causes ground-fault circuit not to operate, and brings about different electrical potential rise by customer system. It brings about serious problems for safety. This paper aims for improving method of grounding system based on the technical analysis on instances in foreign countries and Korea. Almost standards and construction manner were apt to be internationalized after WTO/TBT agreement was concluded. The internal grounding systems should meet the international criteria and reliability for safety, and be provided with technologically impeccable standards.

  • PDF

A Study on the Effective Surge Protection Method from Induced Lightning Surgeto Improve Isolate Grounding to Common Grounding (낙뢰 Surge 방호를 위한, 독립접지를 공통접지로 개선하는 효율적인 방법에 대한 연구)

  • Jeon, Hyung-Gu;Woo, Jea-Wook;Suh, Yong-Joon
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1459-1467
    • /
    • 2011
  • This paper proposes the effective method to improve the protection from induced lightning Surge by making common grounding from individual grounding. Common grounding under equipotential principle is more effective than individual grounding for lightning Surge protection, and so common grounding is indicated as international technical standard under the AC power supply system with neutral line. So, this paper is to propose the effective way of induced lightning Surge protection method for currently installed power supply system which has no neutral grounded line and individual grounding which are weak for lightning Surge protection. This proposal can improve the power supply system as has neutral line, and improve the grounding system to common grounding system. And also this paper proposes to make effective equipotential system with voltage variable shunting devices for lightning Surge protection.

  • PDF

A Study on the Effective Surge Protection Method from Induced Lightning Surge to Improve Isolate Grounding to Common Grounding (낙뢰 Surge 방호를 위한, 독립접지를 공통접지로 개선하는 효율적인 방법에 대한 연구)

  • Woo, Jea-Wook
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.10a
    • /
    • pp.215-218
    • /
    • 2013
  • This paper proposes the effective method to improve the protection from induced lightning surge by making common grounding from individual grounding. Common grounding under equipotential principle is more effective than individual grounding for lightning surge protection, and so common grounding is indicated as international technical standard under the AC power supply system with neutral line. So, this paper is to propose the effective way of induced lightning surge protection method for currently installed power supply system which has no neutral grounded line and individual grounding which are weak for lightning surge protection. This proposal can improve the power supply system as has neutral line, and improve the grounding system to common grounding system. And also this paper proposes to make effective equipotential system with voltage variable shunting devices for lightning surge protection.

  • PDF

Hazards and Solutions of Loss of the PEN Conductor in TN-C-S System (TN-C-S계통에서 PEN도체의 단선고장의 위험성 및 보호대책)

  • Lee, Bok-Hee;Lee, Kyu-Sun;Ahn, Chang-Hwan;Kim, Han-Su
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.8
    • /
    • pp.113-120
    • /
    • 2007
  • This paper presents the electric shock hazards and solutions of loss of the combined protective and neutral (PEN) conductor in TN-C-S system. In order to mitigate the touch voltage on exposed-conductive-parts in a break in the PEN conductor, the touch voltages on exposed-conductive-parts in a break in the PEN conductor were experimentally investigated as a function of the ground resistances of the source grounding electrode and customer's additional grounding electrode. As a result, the equipotential bonding is one of important requirements for installations supplied by TN-C-S system. A solution of mitigating the touch voltages on exposed-conductor-parts caused by a loss of the PEN conductor would be the installation of the additional grounding electrode at the customer's service entrance. The ground resistance of additional grounding electrode necessary to limit the touch voltage to a safety voltage of less than 50[V] depends on the load and circuit parameters. In addition, the undervoltage sensing devices oner affordable solutions to detect a loss of the PEN conductor in TN-C-S system.

A Study on Grounding Characteristic Analysis of Large-scaled Apartment Complex Based on PSCAD/EMTDC (PSCAD/EMTDC에 의한 대규모 아파트단지의 접지특성 해석에 관한 연구)

  • Lee, Hu-Dong;Shin, Myeong-Ki;Choi, Sung-Sik;Kang, Min-Kwan;Nam, Yang-Hyun;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.650-658
    • /
    • 2017
  • A grounding system in a large-scale apartment complex consists of a TT grounding system when viewed in each building unit, but the characteristics of TN grounding system appears when viewed in the total ground system function. Therefore, this study examined the characteristics of a grounding system in a large-scale apartment complex using design draft, field measurements and PSCAD/EMTDC modeling. This paper proposes an algorithm for fault analysis depending on the grounding system structure in large-scale apartment complexes considering the connection of the underground culvert as well as a design algorithm for each grounding system considering the contact voltage and step voltage. The simulation results based on the proposed modeling and algorithm confirmed that it is useful for analyzing the characteristics of a grounding system in a large-scale apartment complex.

Personnel Safety Related to Disconnection of PEN Conductor in TN-C-S System (TN-C-S계통에서 PEN도체 단선이 인체안전에 미치는 영향)

  • Kim, Jung-Cheol;Lee, Kyu-Sun;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.5
    • /
    • pp.58-64
    • /
    • 2012
  • In electric power supply systems, an earthing system determines the electric potential of the conductors related to that of the Earth's surface. The choice of earthing system has implications for the safety of the power supply systems. There are considerably different regulations for earthing (grounding) systems in each country. A protective earth(PE) conductor ensures that all exposed conductive surfaces are at the same electric potential as the earth surface. This paper deals with that when PEN conductor of TN-C-S system is disconnected, dangerous touch voltage causes personnel body to be harmed and human being's property to be damaged seriously. For this reason, this paper explains how serious problems can occur when the fault current flows. As a consequence, we can understand how we can design earthing system properly to ensure the personnel safety against earth faults. The result shows the way that TN-C-S system can be applied safely in Korea.