• Title/Summary/Keyword: TMV-W

Search Result 11, Processing Time 0.024 seconds

Characteristics of Tobacco Mosaic Virus Isolated from Wasabi (Eutrema wasabi) in Korea

  • Kim, Hyung-Moo;Lee, Kui-Jae
    • The Plant Pathology Journal
    • /
    • v.15 no.4
    • /
    • pp.247-250
    • /
    • 1999
  • Wasabies showing mosaic symptoms were collected and extracted for virus purification. Tobacco mosaic virus (TMV) was identified as causal agent by electron microscopy and nucleic acid and coat protein analyses. TMV strains were determined by enzyme-linked immunosorbent assay (ELISA). TMV was identified as W and C strain in wasabi. The results of host reaction indicated that this virus induced local lesions on Nicotiana tabacum cv. Bright Yellow and N. glutinosa, leaf spots on Chenopodium amaranticolor and mosaic symptoms on wasabi. Rot shape virus particles were observed and was about 300 nm in length. About 6.5 kb single RNA molecule was observed from extracted viral RNA sample and 26 KDa coat protein was detected in denatured acrylamide gel. Infection ratio of TMV was 8% for the first cultivation year, but was 22% for the second year when TMV-W antiserum was used. The results of this experiment showed that infection ratios of both TMV-W and TMV-C strains were higher compared to that of TMV-P strain.

  • PDF

Complete Nucleotide Sequence of Tobacco Mosaic Virus Isolated from Wasabi(Eutrema wasabi Maxim.) (고추냉이에서 분리한 담배 모자이크 바이러스(TMV-W)의 전체 유전자 염기서열 분석)

  • 이귀재
    • Korean Journal of Plant Resources
    • /
    • v.16 no.1
    • /
    • pp.82-88
    • /
    • 2003
  • Genomic RNA sequence of a tobamovirus infecting Eutrema wasabi plant(TMV-W) was determined. The RNA is composed 6,298 nucleotide and contains four OREs encoding the protein of 180KD(OREI), 130KD(ORE2),30KD(ORF3) and 18KD(coat protein, ORF4). ORE4, ORF 3, ORF 2 and ORF 1 are overlaped by 130, 20 and 40 nucleotides, and the overapping region can be folded into a stable hairpin styucture. This includes the 3'non-coding region of 238 nucleotides, coat protein gene(537 nucleotides,179 amino acid), 30KD movement protein gene(825 nucleotides, 275 amino acid), 13(IKD protein gene(1,896 nucleotides, 632 amino acid) and 180KD protein gene(2,958 nucleotides, 986 amino acid). The genomic RNA sequence was compared with homologous regions of eleven other tobamoviruses. TMV-WTE was similar to TMV-WSF(98.6%) in nucleotide sequence.

Biological, Physico-chemical and Serological Characteristics of TMV Strains Isolated from Tobacco, Tomato and Pepper Plants (담배, 토마토 및 고추에서 분리된 TMV 계통의 생물학적, 물리화학적 및 혈청학적 특성)

  • 박은경;이청호;이영기;김영호
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.19 no.1
    • /
    • pp.5-10
    • /
    • 1997
  • Three strains of W isolated from tobacco, tomato and Pepper plants in Korea were characterized based on biological response, serological relationship, and peptide mapping of the capsid Proteins. The strains designated as TMV-common, TMV-Pepper, and TMV-tomato could be distinguishable by different visual symptoms on 3 varieties of tobacco, one variety of tomato and Pepper for each among 27 plant specieces. Serological relationships were examined by agar gel double diffusion test. Only traceable or weak reaction was observed in the incompatible antigen-antibody combinations. The Pepper strain, however, showed trace in reaction with other two antisera. Peptide maps of the capsid proteins digested by V8 protease or by trypsin were also distinguishable, suggesting differences in composition and/or sequence of the amino acids among the strains.

  • PDF

Effect of Metals on Tobacco Mosaic Virus Infection (담배모자이크 바이러스 감염성에 대한 금속의 영향)

  • Choi, C.W
    • The Journal of Natural Sciences
    • /
    • v.10 no.1
    • /
    • pp.23-26
    • /
    • 1998
  • The efficacy of various concentration of divalent copper and zinc ions was evaluated separately for the infectivity of tobacco mosaic virus. Infectivity of TMV was more enhanced by addition of zinc, while it was decreased by addition of copper. The number of local lesions were more produced on tobacco leaves inoculated with inoculum sap containing zinc than those inoculated with sap only. The effect of copper inhibited the infectivity of TMV is dependent on copper concentration. TMV particles treated with various concentration of zinc and copper, respectively, analyzed by electrophoresis, and appeared to be altered in electrophoretic behavior. When TMV was exposed to zinc concentration at more than 200mM, the viral particles were completely degraded, and at 40-20 mM they were barely detectable, but at 2 mM they were quite stable. When TMV was exposed at less than concentration of 20 mM of copper were degraded.

  • PDF

Inactivation by Chemical Disinfectants in vitro against Tobacco Mosaic Virus (화학적 제어제에 의한 담배모자이크 바이러스의 불활성화)

  • Choi, C.W
    • The Journal of Natural Sciences
    • /
    • v.10 no.1
    • /
    • pp.17-21
    • /
    • 1998
  • Numerous chemicals were tasted to show antiviral activity in vitro against tobacco mosaic virus (TMV). With a brief exposure of TMV to 1 N HCl or 1-0.1 N NaOH, Virions and their encapsidated RNAs were degraded completely and rapidly. When TMV was exposed to 0.1 N HCl, the hydrolysis of viral capsid in 5 min after treatment was observed in the 1% agarose gel. Virions and their encapsidated RNAs were not degraded by 0.01N HCl of 0.01N NaOH. These characteristics indicate that a short exposure to optimal concentration of acid or base is of practical value in eliminating infectious virus. The treatment of 50% isopropanol or UV light did not damage in viral integrity or their encapsidated RNAs. Disinfection of the agricultural tools and laboratory equipments using appropriate disinfectants is necessary to prevent cross contamination if farm and laboratory.

  • PDF

Studies with the tobacco mosaic viruses (한국산 연초 "바이러스"에 관한 연구)

  • 김은수;소인영
    • Korean Journal of Microbiology
    • /
    • v.1 no.1
    • /
    • pp.10-18
    • /
    • 1963
  • Studies with the Tobacco Mosaic Viruses; W. S Kim, and So, I Y., (Dept. of biology Sung Kyun Kwan Univer. Seoul, Korea.). Using the common strain of tobacco mosaic virus (TMV) which was sent from the Dept. of Plant Pathology, University of Wisconsin, U.S.A. as control virus, a possible new strain of tobacco mosaic virus (SMV) was isolated from tobacco leaves collected from Tobacco Experiment Station farms as well as from various blends of manufactured Korean cigaretts. SMV was isolated by single lesion isolation method and by inoculating the virus through various species of host plants. The two viruses, TMV and SMV were indentified by the difference in symptoms, host range, serological reaction, and electron micrograpy. As the results of the above experiment the author believes the virus isolate SMV is a different strain of TMV. The experimental evidences that SMV belongs to the TMV group are as follows; 1. Both viruses produced local necrotic lesions on Nicotiana glutimosa L. 2. Both showed a dilution end point of $10^8$. 3. Aphid transmission was failed with the viruses. 4. Both had an isoelectric point around pH 3.3. 5. Two viruses were serological reactive. 6. The size of the virus particles was around 270-300mu as they were observed under the electron microscope. The virus SMV, however, is different from the common strain of TMV and the experimental evidences are as follows; 1. SMV produced quite different symptoms from TMV on various host plants like tobacoo(Nicotiana tabacum L., White Burley), Nicotiana rustica L., Chenopodium Koreanse Nakai. Bata vulgaris L., and Datura tatula L., SMV produced distinct local lesions on these host plants whereas TMV incited largely mosaic diseases. 2. The serological titers obtained from the heterologous combinations were lower than those from homologous combinations of antigens and antiser.

  • PDF

Modeling and Performance Investigation of Forklift Transmission Control Valve System (지게차 변속제어밸브의 모델링 및 성능 검증)

  • Truong, D.Q.;Ahn, K.K.;Yoon, J.W.
    • Journal of Drive and Control
    • /
    • v.11 no.3
    • /
    • pp.1-6
    • /
    • 2014
  • In forklifts, the machine performance is largely depended on the transmission performance. The aim of this paper is to develop a complete model of transmission control valve (TMV) system of a typical forklift using AMESim simulation tool. By using the developed TMV model, it becomes easy to investigate the system concept, working principle, and performance. In addition, an optimization on the TMV structure can be achieved by using this model with tunable parameters. Simulations have been carried out in a comparison with the actual experiments to verify the model.

Molecular Breeding of Tobacco Plants Resistant to TMV and PVY (분자생물학적 TMV 및 PVY 저항성 연초 육종)

  • E.K. Pank;Kim, Y.H.;Kim, S.S.;Park, S.W.;Lee, C.H.;K.H.Paik
    • Proceedings of the Korean Society of Tobacco Science Conference
    • /
    • 1997.10a
    • /
    • pp.134-152
    • /
    • 1997
  • Plant viruses of tobacco including tobacco mosaic virus (TMV) and potato virus Y (PVY) cause severe economic losses in leaf-tobacco production. Cultural practices do not provide sufficient control against the viruses. Use of valuable resistant cultivars is most recommendable for the control of the viruses. However, conventional breeding programs are not always proper for the development of virus-resistant plants mostly owing to the frequent lack of genetic sources and introduction of their unwanted properties. Therefore, we tried to develop virus-resistant tobacco plants by transforming commercial tobacco cultivars, NC 82 and Burley 21, with coat protein (CP) or replicase (Nlb) genes of TMV and PVY necrosis strain (PVY-VN) with or without untranslated region (UTR) and with or without mutation. Each cDNA was cloned and inserted in plant expression vectors with 1 or 2 CaMV 35S promotors, and introduced into tobacco leaf tissues by Agrobacterium tumefaciens LBA 4404. Plants were regenerated in kanamycin-containing MS media. Regenerated plants were tested for resistance to TMV and PVY In these studies, we could obtain a TMV-resistant transgenic line transformed with TMV CP and 6 genetic lines with PVY-VN cDNAs out of 8 CP and replicase genes. In this presentation, resistance rates, verification of gene introduction in resistant plants, stability of resistance through generations, characteristics of viral multiplication and translocation in resistant plants, and resistance responses relative to inoculum potential and to various PVY strains will be shown. Yield and quality of leaf tobacco of a promising resistant tobacco line will be presented.

  • PDF

Characterization of disease outbreak pattern of transgenic potato plants with the coat protein gene of Potato leaf roll virus.

  • Shin, D.B.;Cheon, J.U.;Jee, J.H;Lee, S.H.;Park, H.S.;Park, J.W
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.121.2-122
    • /
    • 2003
  • Since the demonstration that the transgenic plants expressing tobacco mosaic virus(TMV) coat protein(CP) gene showed resistance to TMV infection, there have been numerous attempts to produce virus-resistant plant by introducing of a part of or modified viral genome. This study was conducted to investigate the characterization and variability of disease outbreak of transgenic potato(T-potato) with the CP gene of potato leaf roll virus(PLRV) in an isolated field from 2000 to 2002. In the field inspection, incidence of PLRV on T-potato showed only 3.5%, while non-transgenic potato(N-potato) revealed 13.4%. Infection rate of PLRV was considerably low on T-potato with 4.2% compared to 15.4% of N-potato in ELISA tests. Those of potato virus M, potato virus Y and potato virus X on both potatoes were not statistically different. Infection of potato virus A was not observed on both potatoes. Incidence of potato late blight caused by Phytopkhora infestans on T-potato and N-potato did not differ each other with 52.7%, and 50.8%, respectively, Mating type of the causal fungus isolated from both potatoes was all Al types. Results indicates that the CP gene of PLRV affects specifically to the virus in the transgenic potato.

  • PDF

Acinetobacter antiviralis sp. nov., from Tobacco Plant Roots

  • Lee, Jung-Sook;Lee, Keun-Chul;Kim, Kwang-Kyu;Hwang, In-Cheon;Jang, Cheol;Kim, Nam-Gyu;Yeo, Woon-Hyung;Kim, Beom-Seok;Yu, Yong-Man;Ahn, Jong-Seog
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.3
    • /
    • pp.250-256
    • /
    • 2009
  • Acinetobacter strain $KNF2022^T$ was isolated from tobacco plant roots during the screening of antiviral substances having inhibitory effects on Tobacco mosaic virus (TMV) and examined by phenotypic, chemotaxonomic, and genetic characterization. It was a nonmotile, Gram-negative bacterium. This strain contained Q-9 as the main respiratory quinone. The major cellular fatty acids of the isolate were 16:0, 18:1 w9c, and 16:1 w7c/15 iso 2OH. The DNA base composition was 44 mol%. Phylogenetic analysis based on the 16S rRNA sequence revealed that the isolate formed an evolutionary lineage distinct from other Acinetobacter species. Based on the evaluation of morphologic, physiologic, and chemotaxonomic characteristics, DNA-DNA hybridization values, and 16S rRNA sequence comparison, we propose the new species Acinetobacter antiviralis sp. nov., the type strain of which is $KNF2022^T$ (=KCTC $0699BP^T$).