• Title/Summary/Keyword: TMR-net

Search Result 19, Processing Time 0.023 seconds

평사 투영 중첩 기법을 이용한 터널 암반 분류: TMR-net

  • 윤운상;임병렬;김정환
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2001.03a
    • /
    • pp.231-245
    • /
    • 2001
  • 경험적 암반 분류법과 운동학적 해석을 동시에 통합하여 사용할 수 있다면, 터널의 암반 상태를 분류하고 예측하는데 매우 유용할 것이다. TMR-net 분석 기법은 RMR 시스템의 평가 기준에 기초한 절리 방향 평가 기준을 설정하고, 이를 극 투영망 상의 평점 기준을 가진 활동 범위로 표현한 평사투영 중첩기법이다. 터널의 설계 및 시공 단계에 적용된 TMR-net 분석은 절리 방향의 영향과 관련된 효과적인 결과를 제공할 수 있었다.

  • PDF

Effects of Formalin Treated Soy Bean as a Source of Rumen Undegradable Protein on Rumen Functions of Non-lactating Dairy Cows on Concentrate Based-diets

  • Kanjanapruthipong, J.;Vajrabukka, C.;Sindhuvanich, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.10
    • /
    • pp.1439-1444
    • /
    • 2002
  • An objective of this study was to determine the effects of increasing contents of rumen undegradable protein (RUP) from formalin treated soy bean (FSBM) on rumen functions. Four rumen canulated non-lactating cows were randomly allocated to total mixed rations (TMR) containing different proportions of soy bean meal (SBM) and FSBM. Of rumen fermentation characteristics, concentrations of ruminal fluid ammonia and molar proportions of isoacids decreased with increasing contents of RUP in diets (p<0.01). The animals on TMR containing only SBM gained less weight and had smaller rumen volume than those on TMR containing RUP from FSBM (p<0.05). Organic matter and neutral detergent fiber digestibility in sacco were not different (p>0.05). The density of protozoa particularly small Entodinium sp. in ruminal fluid was higher in animal fed TMR containing SBM:FSBM (34:66) and FSBM than those fed TMR containing SBM:FSBM (66:34) and SBM (p<0.01). Total viable count, and net microbial protein synthesis as indicated by purine derivatives in urine increased with increasing contents of RUP from FSBM (p<0.01). It can be concluded that a reduction in net microbial protein synthesis in the rumen with increasing contents of RUP in the diet can be due to the reduction of preformed protein available for microbial growth as well as an increased turnover rate of microbial cells by predatory activity of protozoa.

Changes in ruminal fermentation and blood metabolism in steers fed low protein TMR with protein fraction-enriched feeds

  • Choi, Chang Weon
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.3
    • /
    • pp.379-386
    • /
    • 2016
  • Four ruminally cannulated Holstein steers (BW $482.9{\pm}8.10kg$), fed low protein TMR (CP 11.7%) as a basal diet, were used to investigate changes in rumen fermentation and blood metabolism according to protein fraction, cornell net carbohydrates and protein system (CNCPS), and enriched feeds. The steers, arranged in a $4{\times}4$ Latin square design, consumed TMR only (control), TMR supplemented with rapeseed meal (AB1), soybean meal (B2), and perilla meal (B3C), respectively. The protein feeds were substituted for 23.0% of CP in TMR. Ruminal pH, ammonia-N, and volatile fatty acids (VFA) in rumen digesta, sampled through ruminal cannula at 1 h-interval after the morning feeding, were analyzed. For plasma metabolites analysis, blood was sampled via the jugular vein after the rumen digesta sampling. Different N fraction-enriched protein feeds did not affect (p > 0.05) mean ruminal pH except AB1 being numerically lower 1 - 3 h post-feeding than the other groups. Mean ammonia-N was statistically (p < 0.05) higher for AB1 than for the other groups, but VFA did not differ among the groups. Blood urea nitrogen was statistically (p < 0.05) higher for B2 than for the other groups, which was rather unclear due to relatively low ruminal ammonia-N. This indicates that additional studies on relationships between dietary N fractions and ruminant metabolism according to different levels of CP in a basal diet should be required.

Effect of Feed Type on Feed Efficiency and Carcass Characteristics of Hanwoo Steers (사료의 형태가 한우 거세우의 사료효율 및 도체성적에 미치는 영향)

  • Lee, Gui-Ye;Cho, Woong-Gi;Moon, Yea-Hwang
    • Journal of agriculture & life science
    • /
    • v.45 no.4
    • /
    • pp.95-103
    • /
    • 2011
  • Ninety five Hanwoo steers averaging 226kg of body weight were used to investigate the effect of dietary type on feed efficiency, carcass characteristics and economical analysis in Hanwoo feeding over 22 months. Treatments were composed of commercial formula feed (formula feed), TMR and Fermented-TMR (F-TMR). Intakes of dry matter and TDN were greater in the F-TMR than the other treatments during each growing and fattening phase (p<0.05). Although daily body gain of the F-TMR was lowest during the growing phase, but was 48% greater than those of other treatment during the finishing phase (p<0.05). Feed efficiency of the F-TMR was maintained constantly during whole growing and fattening phases. Carcass weight and rib-eye area of the F-TMR were greatest (p<0.05) among treatments. However, meat yield index and the rate of grade A in meat yield were highest in the formula feed having the thinnest back fat. Marbling score was hugely (p<0.05) increased when steers fed F-TMR, and therateofgrade 1+andoverinmeatqualitywas96%intheF-TMR. Although feed cost in the F-TMR was increased by 40% compare to the formula feed, but net income was increased by 29% due to improvement of meat quality and body gain.

Effects of CNCPS fraction-enriched proteins on ruminal fermentation and plasma metabolites in holstein steers fed TMR containing low protein (저단백질 TMR을 기초사료로 급여한 홀스타인 거세우에 있어서 CNCPS fraction별 고함유 단백질 공급이 반추위 발효패턴 및 혈액대사물질에 미치는 영향)

  • Choi, Chang Weon
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.3
    • /
    • pp.237-244
    • /
    • 2015
  • Four ruminally cannulated Holstein steers (BW $401.0{\pm}2.22kg$) fed TMR containing low protein (CP 9.63 %) as a basal diet were used to investigate the effects of cornell net carbohydrates and protein system (CNCPS) fraction enriched protein feeds on rumen fermentation and blood metabolites. The steers used in a $4{\times}4$ Latin square design consumed TMR only (control), TMR with rapeseed meal (AB1), TMR with soybean meal (B2) and TMR with perilla meal (B3C), respectively. The protein feeds were substituted for 30 % crude protein of TMR intake. For measuring ruminal pH, ammonia-N and volatile fatty acids (VFA), ruminal digesta was sampled through ruminal cannula at 1 h-interval after the afternoon feeding. Blood was sampled via the jugular vein after the ruminal digesta sampling. Different CNCPS fraction-enriched proteins did not affect (p>0.05) ruminal pH except B3C being numerically low compared with the other groups. Ammonia-N and VFA were not significantly different among the experimental groups. Numerically low ammonia-N appeared in the steers fed rapeseed meal even though it contained high soluble N composition (A and B1 fractions). The discrepancy is unclear; however this may be related to low protein level in the diet and/or low DM intake. Blood metabolites were not significantly affected by the protein substitution except for blood urea nitrogen that was significantly (p<0.05) increased.

Effects of Three Feeding Systems on Production Performance, Rumen Fermentation and Rumen Digesta Particle Structure of Beef Cattle

  • Liu, Y.F.;Sun, F.F.;Wan, F.C.;Zhao, H.B.;Liu, X.M.;You, W.;Cheng, H.J.;Liu, G.F.;Tan, X.W.;Song, E.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.5
    • /
    • pp.659-665
    • /
    • 2016
  • The effects of three different feeding systems on beef cattle production performance, rumen fermentation, and rumen digesta particle structure were investigated by using 18 Limousin (steers) with a similar body weight ($575{\pm}10kg$) in a 80-d experiment. The animals were equally and randomly divided into three treatment groups, namely, total mixed ration group (cattle fed TMR), SI1 group (cattle fed concentrate firstly then roughage), and SI2 group (cattle fed roughage firstly then concentrate). The results showed that the average daily gain was significantly higher in cattle receiving TMR than in those receiving SI1 and SI2 (p<0.05). Consumption per kg weight gain of concentrate, silage, and combined net energy (NEmf) were significantly decreased when cattle received TMR, unlike when they received SI1 and SI2 (p<0.05), indicating that the feed efficiency of TMR was the highest. Blood urea nitrogen (BUN) was significantly decreased when cattle received TMR compared with that in cattle receiving SI1 (p<0.05), whereas there was no difference compared with that in cattle receiving SI2. Ammonia nitrogen concentration was significantly lower in cattle receiving TMR than in those receiving SI1 and SI2 (p<0.05). The rumen area of cattle that received TMR was significantly larger than that of cattle receiving SI1 (p<0.05), but there was no difference compared with that of cattle receiving SI2. Although there was no significant difference among the three feeding systems in rumen digesta particle distribution, the TMR group trended to have fewer large- and medium-sized particles and more small-sized particles than those in the SI1 and SI2 groups. In conclusion, cattle with dietary TMR showed increased weight gain and ruminal development and decreased BUN. This indicated that TMR feeding was more conducive toward improving the production performance and rumen fermentation of beef cattle.

Effects of Rumen Undegradable Protein and Minerals Proteinate on Early Lactation Performance and Ovarian Functions of Dairy Cows in the Tropics

  • Kanjanapruthipong, J.;Buatong, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.6
    • /
    • pp.806-811
    • /
    • 2002
  • A 90 d study was designed to investigate the effects of rumen undegradable protein (RUP) and a mixture of Cu, Zn and Mn proteinate (CZMP) on milk yield and composition and ovarian functions during rainy months. Twenty four Holstein${\times}$ indigenous cows in their 2nd and 3rd lactation were randomly allocated to total mixed rations (TMR) containing soy bean meal (SBM) as a source of rumen degradable protein (RDP), SBM plus CZMP, and formalin treated SBM (FSBM) as a source of RUP. Maximum and minimum temperature humidity index during the experimental period were 83.6-84.7 and 75.4-76.1. There were no differences (p>0.05) in intakes of dry matter, crude protein and net energy and in contents of butterfat, lactose and minerals. Cows on TMR containing FSBM not only lost less weight (-278, -467 and -433 g/d) with more intake of RUP (0.92, 0.58 and 0.59 kg/d) but also produced more milk (19.27, 18.23 and 18.13 kg/d) and 4% fat corrected milk (18.57, 17.57 and 17.51 kg/d) with more protein (3.06, 2.81 and 2.80%), solids-not-fat (8.69, 8.38 and 8.38%) and less milk urea N (9.3, 15.4 and 15.0 mg/dl) compared with those on TMR containing SBM and SBM+CZMP, respectively (p<0.01). However, cows on TMR containing SBM and SBM+CZMP did not differ in these respects (p>0.05). Whereas incidence of cystic ovaries at 20 and 90 d pospartum was less (p<0.01) in cows on TMR containing SBM+CZMP (37.3 and 12.5%) than those on TMR containing SBM (62.5 and 25%), it was nil for cows on TMR containing FSBM. Cows in all three group differed (p<0.01) from each other for the recurrence of first observed estrus with those on TMR containing FSBM having least days (22, 36 and 47 d) compared with their counterpart on TMR containing SBM+CZMP and SBM, repectively. The results suggest that RUP is one of the limiting factors affecting milk yield and its composition and ovarian functions during early lactation of dairy cows in the tropics.

Effect of Concentrate Feeding Frequency versus Total Mixed Ration on Lactational Performance and Ruminal Characteristics of Holstein Cows

  • Fan, Yang-Kwang;Lin, Yaun-Lung;Chen, Kuen-Jaw;Chiou, Peter Wen-Shyg
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.5
    • /
    • pp.658-664
    • /
    • 2002
  • This study was conducted to determine a proper feeding regime for lactating Holstein cows during the warm season in Taiwan. In Feeding Trial, 21 lactating Holstein cows were randomly allotted into three feeding regimes in a Completely Randomized Design. The feeding regimes were roughage fed ad libitum along with concentrate fed either twice daily (2C) or four times daily (4C), and total mixed ration (TMR) for 8 weeks. No significant differences among the three feeding regimes were found in body weight changes, and intakes in terms of dry matter, crude protein and net energy. For milk yield and 4% FCM yield, 4C were higher than the other two feeding regimes (p<0.05). No significant differences were found in milk compositions or differences noted in the yields of the respective milk components. TMR was worse than 2C and 4C (p<0.05) in milk production efficiencies in terms of dry matter intake per kg milk yield, crude protein intake per kg milk protein yield, as well as dry matter intake, net energy intake and crude protein intake per kg 4% FCM yield. Three ruminally fistulated Holstein dry cows were randomly assigned into the same three feeding regimes in a 3${\times}$3 Latin Square Design. No significant differences were found among the feeding regimes in ruminal pH, ammonia nitrogen, total VFA concentration, molar percentages of VFA, and acetic acid: propionic acid ratio (C$_2$/C$_3$). Taken all together, roughage fed ad libitum and concentrate fed four times daily was the better feeding regime for lactating cows during the warm season in Taiwan.

Changes in in vivo ruminal fermentation patterns and blood metabolites by different protein fraction-enriched feeds in Holstein steers

  • Choi, Chang Weon
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.3
    • /
    • pp.392-399
    • /
    • 2017
  • The present study was conducted to investigate the effects of different dietary proteins as fraction-enriched protein, defined by Cornell net carbohydrates and protein system (CNCPS), on in vivo ruminal fermentation pattern and blood metabolites in Holstein steers fed total mixed ration (TMR) containing 17.2% crude protein. Four ruminally cannulated Holstein steers in a $4{\times}4$ Latin square design consumed TMR only (control) and TMR with rapeseed meal (AB1), soybean meal (B2), and perilla meal (B3C). Each protein was substituted for 23.0% of crude protein in TMR. Rumen digesta were taken through ruminal cannula at 1 h interval during the feeding cycle in order to analyze ruminal pH, ammonia-N, and volatile fatty acids (VFA). Plasma metabolites in blood taken via the jugular vein after the rumen digesta sampling were analyzed. Feeding perilla meal significantly (p < 0.05) decreased mean ruminal pH compared with control and the other protein feeding groups. Compared with control, feeding protein significantly (p < 0.05) increased ruminal ammonia-N concentration except for AB1. Statistically (p > 0.05) similar total VFA appeared among control and the supplemented groups. However, control, AB1, and B2 showed higher (p < 0.05) acetate concentrations than B3C, and propionate was vice versa. CNCPS fractionated protein significantly (p < 0.05) affected concentrations of albumin and total protein in blood; i.e. plasma albumin was lower for control and B2 groups than AB1 and B3C groups. Despite lack of significances (p > 0.05) in creatinine and blood urea nitrogen, AB1 and B2 groups were numerically higher than the others.