• Title/Summary/Keyword: TLR signaling

Search Result 188, Processing Time 0.03 seconds

In Vitro and In Vivo Effects of Piceatannol and Resveratrol on Glucose Control and TLR4-NF-κB Pathway (피세아테놀과 레스베라트롤의 혈당조절 및 TLR4-NF-κB 경로 조절 작용)

  • Lee, Hee Jae;Lee, Hae-Jeung;Yang, Soo Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.2
    • /
    • pp.267-272
    • /
    • 2017
  • Piceatannol (PIC) is a natural hydroxylated analog of resveratrol (RSV), which is a polyphenol known to extend lifespan by stimulating sirtuins. The aim of this study was to investigate the effects of PIC and RSV on the toll-like receptor 4 (TLR4)-nuclear factor kappa B ($NF-{\kappa}B$) pathway in mouse hepatocytes and an obese/diabetic KK/HlJ mouse model. AML12 mouse hepatocytes in the absence or presence of palmitic acids (PA) were treated with PIC ($50{\mu}M$) or RSV ($50{\mu}M$). Male KK/HlJ mice at 20 weeks of age were divided into three subgroups as follows: 1) obese and diabetic control (KK), 2) KK_PIC, and 3) KK_RSV. PIC and RSV were administered orally at a dose of 10 mg/kg/d for 4 weeks. Four weeks of PIC and RSV treatment did not affect body weight or food intake in KK mice. Serum fasting blood glucose was significantly reduced in KK_PIC, and 2 h oral glucose tolerance test area under the curve was significantly reduced by PIC and RSV treatment in KK mice. PIC tended to improve homeostasis model assessment of the insulin resistance index (HOMA-IR) and HOMA beta-cells in diabetic KK mice. TLR4 and $NF-{\kappa}B$ were down-regulated by PIC and RSV treatments in hepatocytes in the absence or presence of PA. Insulin receptor, AMP-activated protein kinase, peroxisome proliferator-activated receptor gamma, nucleotide oligomerization domain-like receptor family pyrin domain-containing 3, interleukin-1, and $NF-{\kappa}B$ were altered in PIC-treated livers. Collectively, PIC and RSV inhibited the $TLR4-NF-{\kappa}B$ pathway, and PIC seems to be more effective than RSV in the regulation of analyzed targets, which are involved in insulin signaling and inflammation in vivo.

Expression of Toll-like Receptor 9 Increases with Progression of Cervical Neoplasia in Tunisian Women - A Comparative Analysis of Condyloma, Cervical Intraepithelial Neoplasia and Invasive Carcinoma

  • Fehri, Emna;Ennaifer, Emna;Ardhaoui, Monia;Ouerhani, Kaouther;Laassili, Thalja;Rhouma, Rahima Bel Haj;Guizani, Ikram;Boubaker, Samir
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.6145-6150
    • /
    • 2014
  • Toll-like receptors (TLRs) are expressed in immune and tumor cells and recognize pathogen-associated molecular patterns. Cervical cancer (CC) is directly linked to a persistent infection with high risk human papillomaviruses (HR-HPVs) and could be associated with alteration of TLRs expression. TLR9 plays a key role in the recognition of DNA viruses and better understanding of this signaling pathway in CC could lead to the development of novel immunotherapeutic approaches. The present study was undertaken to determine the level of TLR9 expression in cervical neoplasias from Tunisian women with 53 formalin-fixed and paraffin-embedded specimens, including 22 samples of invasive cervical carcinoma (ICC), 18 of cervical intraepithelial neoplasia (CIN), 7 of condyloma and 6 normal cervical tissues as control cases. Quantification of TLR9 expression was based on scoring four degrees of extent and intensity of immunostaining in squamous epithelial cells. TLR9 expression gradually increased from CIN1 (80% weak intensity) to CIN2 (83.3% moderate), CIN3 (57.1% strong) and ICC (100% very strong). It was absent in normal cervical tissue and weak in 71.4% of condyloma. The mean scores of TLR9 expression were compared using the Kruskall-Wallis test and there was a statistical significance between normal tissue and condyloma as well as between condyloma, CINs and ICC. These results suggest that TLR9 may play a role in progression of cervical neoplasia in Tunisian patients and could represent a useful biomarker for malignant transformation of cervical squamous cells.

Improvement Effect of Non-alcoholic Fatty Liver Disease by Curcuma longa L. Extract (강황 추출물의 비알코올성 지방간 질환 개선 효과)

  • Lee, Young Seob;Lee, Dae Young;Kwon, Dong Yeul;Kang, Ok Hwa
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.4
    • /
    • pp.276-286
    • /
    • 2020
  • Background: Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease associated with multiple metabolic disorders. The medicinal plant Curcuma longa L. is widely distributed in Asia and has been used to treat a spectrum diseases in clinical practice. To date, there are inadequate reports of the effects of C. longa 50% EtOH extract (CE) on NAFLD. Therefore, in this study, we evaluate the CE on an NAFLD animal and elucidate the mechanism of action. Methods and Results: C57BL/6J mice fed a methionine-choline deficient diet (MCD) were treated with CE or milk thistle, and changes in inflammation and stetosis were assessed. Experimental animals were divided into six group (n = 10); Normal, MCD, MCD + CE 50 mg/kg/day (CE 50), MCD + CE 100 mg/kg/day (CE 100), MCD + CE 150 mg/kg/day (CE 150), and the Control, MCD + Milk thistle 150 mg/kg/day (MT 150). Body weight, liver weight, liver function, and histological changes were assessed in experimental animals. Quantitative real-time polymerase chain reaction and western blot analyses were performed on samples collected after 4 weeks of treatment. We observed that CE administration improved MCD-diet-induced lipid accumulation, and triglyceride (TG) and total cholesterol (TC) levels in serum. Treatment with CE also decreased hepatic lipogenesis through modulation of the sterol regulatory element binding protein-1 (SREBP-1), CCAAT-enhancer binding protein α (C/EBPα), fatty acid synthase (FAS), and peroxisome proliferator-activated receptor γ (PPARγ) expresion. In addition, the use of CE increased adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and inhibited the up-regulation of toll-like receptor (TLR)-2 and TLR-4 signaling and the production of inflammatory mediators. Conclusions: In this report, we observed that CE regulated lipid accumulation in an MCD dietinduced NAFLD model by decreasing lipogenesis. These data suggeste that CE could effectively protect mice against MCD-induced NAFLD, by inhibiting the TLR-2 and TLR-4 signaling cascades.

Transcriptional regulation of chicken leukocyte cell-derived chemotaxin 2 in response to toll-like receptor 3 stimulation

  • Lee, Seokhyun;Lee, Ra Ham;Kim, Sung-Jo;Lee, Hak-Kyo;Na, Chong-Sam;Song, Ki-Duk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.12
    • /
    • pp.1942-1949
    • /
    • 2019
  • Objective: Leukocyte cell-derived chemotaxin 2 (LECT2) is associated with several physiological processes including inflammation, tumorigenesis, and natural killer T cell generation. Chicken LECT2 (chLECT2) gene was originally identified as one of the differentially expressed genes in chicken kidney tissue, where the chickens were fed with different calcium doses. In this study, the molecular characteristics and gene expression of chLECT2 were analyzed under the stimulation of toll-like receptor 3 (TLR3) ligand to understand the involvement of chLECT2 expression in chicken metabolic disorders. Methods: Amino acid sequence of LECT2 proteins from various species including fowl, fish, and mammal were retrieved from the Ensembl database and subjected to Insilco analyses. In addition, the time- and dose-dependent expression of chLECT2 was examined in DF-1 cells which were stimulated with polyinosinic:polycytidylic acid (poly [I:C]), a TLR3 ligand. Further, to explore the transcription factors required for the transcription of chLECT2, DF-1 cells were treated with poly (I:C) in the presence or absence of the nuclear factor ${\kappa}B$ ($NF{\kappa}B$) and activated protein 1 (AP-1) inhibitors. Results: The amino acid sequence prediction of chLECT2 protein revealed that along with duck LECT2 (duLECT2), it has unique signal peptide different from other vertebrate orthologs, and only chLECT2 and duLECT2 have an additional 157 and 161 amino acids on their carboxyl terminus, respectively. Phylogenetic analysis suggested that chLECT2 is evolved from a common ancestor along with the actinopterygii hence, more closely related than to the mammals. Our quantitative polymerase chain reaction results showed that, the expression of chLECT2 was up-regulated significantly in DF-1 cells under the stimulation of poly (I:C) (p<0.05). However, in the presence of $NF{\kappa}B$ or AP-1 inhibitors, the expression of chLECT2 is suppressed suggesting that both $NF{\kappa}B$ and AP-1 transcription factors are required for the induction of chLECT2 expression. Conclusion: The present results suggest that chLECT2 gene might be a target gene of TLR3 signaling. For the future, the expression pattern or molecular mechanism of chLECT2 under stimulation of other innate immune receptors shall be studied. The protein function of chLECT2 will be more clearly understood if further investigation about the mechanism of LECT2 in TLR pathways is conducted.

Molecular Mechanisms Involved in Peptidoglycan-induced Expression of Tumor Necrosis Factor-α in Monocytic Cells (펩티도글리칸에 의한 단핵세포의 Tumor necrosis factor-α 발현 기전 연구)

  • Jeong, Ji-Young;Son, Yonghae;Kim, Bo-Young;Kim, Koanhoi
    • Journal of Life Science
    • /
    • v.29 no.11
    • /
    • pp.1251-1257
    • /
    • 2019
  • Peptidoglycan (PG) is found in atheromatous lesions of arteries, where monocytes/macrophages express inflammatory cytokines, including tumor necrosis factor-alpha ($TNF-{\alpha}$). This study investigated the effects of PG on $TNF-{\alpha}$ expression and examined possible cellular factors involved in $TNF-{\alpha}$ upregulation. The overall aim was to identify the molecular mechanisms underlying inflammatory responses to bacterial pathogen-associated molecular patterns in the artery. Exposure of human THP-1 monocytic cells to PG enhanced the secretion of $TNF-{\alpha}$ and induced its gene transcription. Inhibition of TLR-2/4 with OxPAPC significantly inhibited $TNF-{\alpha}$ gene expression, whereas inhibition of LPS by polymyxin B did not. The PG-induced expression of $TNF-{\alpha}$ was also significantly suppressed by pharmacological inhibitors that modulate activities of cellular signaling molecules; for example, U0126 (an ERK inhibitor), SB202190 (a p38 MAPK inhibitor), and SP6001250 (a JNK inhibitor) significantly attenuated PG-induced transcription of $TNF-{\alpha}$ and secretion of its gene product. $TNF-{\alpha}$ expression was also inhibited by rapamycin (an mTOR inhibitor), LY294002 (a PI3K inhibitor), and Akt inhibitor IV (an Akt inhibitor). ROS-regulating compounds, like NAC and DPI, also significantly attenuated $TNF{\alpha}$ expression induced by PG. These results suggest that PG induces $TNF-{\alpha}$ expression in monocytes/macrophages by multiple molecules, including TLR-2, PI3K, Akt, mTOR, MAPKs, and ROS.

Molecular Signatures in Chicken Lungs Infected with Avian Influenza Viruses

  • Jeong Woong Park;Marc Ndimukaga;Jaeyoung Heo;Ki-Duk Song
    • Korean Journal of Poultry Science
    • /
    • v.50 no.4
    • /
    • pp.193-202
    • /
    • 2023
  • Influenza IAVs are encapsulated negative-strand RNA viruses that infect many bird species' respiratory systems and can spread to other animals, including humans. This work reanalyzed previous microarray datasets to identify common and specific differentially expressed genes (DEGs) in chickens, as well as their biological activities. There were 760 and 405 DEGs detected in HPAIV and LPAIV-infected chicken cells, respectively. HPAIV and LPAIV have 670 and 315 DEGs, respectively, with both viruses sharing 90 DEGs. Because of HPAIV infection, numerous genes were implicated in a fundamental biological function of the cell cycle, according to the functional annotation of DEGs. Of the targeted genes, expressions of CDC Like Kinase 3 (CLK3), Nucleic Acid Binding Protein 1 (NABP1), Interferon-Inducible Protein 6 (IFI6), PIN2 (TERF1) Interacting Telomerase Inhibitor 1 (PINX1), and Cellular Communication Network Factor 4 (WISP1) were altered in DF-1 cells treated with polyinosinic:polycytidylic acid (PIC), a toll-like receptor 3 (TLR3) ligand, suggesting that transcription of these genes be controlled by TLR3 signaling. To gain a better understanding of the pathophysiology of AIVs in chickens, it is crucial to focus more research on unraveling the mechanisms through which AIV infections may manipulate host responses during the infection process. Insights into these mechanisms could facilitate the development of novel therapeutic strategies.

Activation of NF-kB and mitogen-activated protein kinases by polysaccharide isolated from Platycodon grandiflorum in RAW 64.7 macrophages

  • Yoon, Y-D;Han, S-B;Hong, D-H;Kang, J-S;Kim, H-M
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.11b
    • /
    • pp.184-184
    • /
    • 2002
  • In our previous study, we reported that PG, a polysaccharide isolated from Plyatycodon grandiflorum, activated macrophages and B cells, but not T cells. Here, we investigated in more detail the mechanism of action of PG in macrophage activation.(omitted)

  • PDF

Immune-Enhancing Activity of Hydrangea macrophylla subsp. serrata Leaves through Macrophage Activation (산수국 잎의 대식세포 활성화를 통한 면역증진활성)

  • Jin Boo Jeong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.87-87
    • /
    • 2020
  • In this study, we investigated the immune-enhancing activity of water extracts from Hydrangea macrophylla subsp. serrata (WE-HML). WE-HML increased cell viability and production of immunomodulators, which contributed to activating phagocytic activity in RAW264.7 cells. Inhibition of JNK and NF-κB reduced the production of immunomodulators by WE-HML. ROS inhibition suppressed the production of immunomodulators, and the activation of JNK and NF-κB signaling by WE-HML. TLR4 inhibition attenuated the production of immunomodulators, and activation of JNK and NF-κB signaling by WE-HML. In the immunosuppressed mouse model, WE-HML increased the spleen index, the levels of the cytokines, the numbers of white blood cells, lymphocytes, and neutrophils. However, WE-HML inhibited LPS-mediated overproduction of pro-inflammatory mediators in RAW264.7 cells, which indicated that WE-HML may have anti-inflammatory activity under excessive inflammatory conditions. Taken together, WE-HML may be considered to have immune-enhancing activity and expected to be used as a potential immune-enhancing agent.

  • PDF