• Title/Summary/Keyword: TLP system

Search Result 45, Processing Time 0.069 seconds

On the Study of System Reliability Analysis of Tension Leg Platforms (TLP 해양구조물의 시스템 신뢰성 해석에 관한 연구)

  • Joo-Sung,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.2
    • /
    • pp.55-62
    • /
    • 1990
  • In this paper, another method for system reliability analysis, called the extended incremental load method, is introduced. The method is an extension of the conventional incremental load method and has been developed aiming at evaluating the probability of system failure(or system reliability) of continuous structures such as floating offshore structures under the multiple loading condition, more realistically considering the post-ultimate behaviour of failed components and directly using the strength formulae of principle components in a structure with employing the modified safety margin equation proposed herein in the system analysis. The method has been applied to the Hutton TLP operated in the Hutton field in the North Sea and a certain variant of the design using the TLP Rule Case Committee type improved strength models. System failure probability and corresponding system reliability indices are derived for a more economical and efficient design. The redundancy characteristics are also addressed. The TLP forms are shown to possess high reserve strength and system safety.

  • PDF

Behavior Analysis of a Tension Leg Platform in Current and Waves (조류와 파랑 중의 인장계류식 해양구조물의 거동해석)

  • Lee, S.C.;Park, C.H.;Bae, S.Y.;Goo, J.S.
    • Journal of Power System Engineering
    • /
    • v.15 no.1
    • /
    • pp.64-71
    • /
    • 2011
  • The Tension Leg Platform(TLP) is restrained from oscillating vertically by tethers(or tendons), which are vertical anchor lines tensioned by the platform buoyancy larger than the platform weight. Thus a TLP is a compliant structure which allows lateral movements of surge, sway, and yaw but restrains heave, pitch, roll. In this paper, the motions of a TLP in current and waves were investigated. Hydrodynamic forces and wave exciting forces acting on the TLP were evaluated using the three dimensional source distribution method. The motion responses and tension variations of the TLP were analyzed in the case of including current or not including one in regular waves and effects of current on the TLP were investigated.

Differential Induction of PepTLP Expression via Complex Regulatory System against Fungal Infection, Wound, and Jasmonic Acid Treatment during Pre-and Post-Ripening of Nonclimacteric Pepper Fruit

  • Jeon, Woong-Bae;Kim, Kwang-Sang;Lee, Hyun-Hwa;Cheong, Soo-Jin;Cho, Song-Mi;Kim, Sun-Min;Pyo, Byoung-Sik;Kim, Ynung-Soon;Oh, Boung-Jun
    • The Plant Pathology Journal
    • /
    • v.20 no.4
    • /
    • pp.258-263
    • /
    • 2004
  • Ripe fruit of pepper (Capsicum annuum) showed resistance to Colletotrichum gloeoporioides, but unripe fruit was susceptible. We previously isolated the PepTLP gene that induced in both unripe and ripe fruit by fungal infection and wound, and only in ripe fruit by jasmonic acid (JA) treatment. To examine further regulation of PepTLP, the action of specific agonist and antagonists of known signaling effector on the .PepTLP expression by fungal infection, wound, and JA was investigated. A similar dephosphorylation event negatively activated all the PepTLP expression in the ripe fruit by fungal infection, wound, and JA. The induction of PepTLP expression by wound is differentially regulated via phosphorylation and dephosphorylation step during pre- and post-ripening, respectively. In addition, the induction of PepTLP expression in the ripe fruit by wound and JA is differentially regulated via dephosphorylation and phosphorylation step, respectively. Only both wound and JA treatment has synergistic effect on the PepTLP expression in the unripe fruit. Both SA and JA treatments on the unripe fruit, and both wound or JA and SA on the ripe fruit could not do any effect on the expression of PepTLP. These results suggest that the induction of PepTLP expression is differentially regulated via complex regulatory system against fungal infection, wound, and JA treatment during pre- and post-ripening of pepper fruit.

Simulation and Experimental Study of A TLP Type Floating Wind Turbine with Spoke Platform

  • Kim, Hyuncheol;Kim, Imgyu;Kim, Yong Yook;Youn, DongHyup;Han, Soonhung
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.4
    • /
    • pp.179-191
    • /
    • 2016
  • As the demand for renewable energy has increased following the worldwide agreement to act against global climate change and disaster, large-scale floating offshore wind systems have become a more viable solution. However, the cost of the whole system is still too high for practical realization. To make the cost of a floating wind system be more economical, a new concept of tension leg platform (TLP) type ocean floating wind system has been developed. To verify the performance of a 5-MW TLP type ocean floating wind power system designed by the Korea Advanced Institute of Science and Technology, the FAST simulation developed by the National Renewable Energy Laboratory is used. Further, 1/50 scale model tests have been carried out in the ocean engineering tank of the Research Institute of Medium and Small Shipbuilding, Korea. This paper compares the simulation and ocean engineering tank test results on motion prediction and tension assessment of the TLP anchor.

Effects of the Multi-directional Irregular Waves on the Motion Responses and Tension Variations of ISSC-TLP (ISSC-TLP의 운동응답 및 변동장력에 미치는 다방향 불규칙파의 영향)

  • Lee, Chang-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.4 s.71
    • /
    • pp.70-75
    • /
    • 2006
  • A numerical procedure is described for estimating the effects of the multi-directional irregular waves on the motion responses and tension variations of the ISSC-TLP. The numerical approach is based on a three-dimensional source distribution method and a spectral analysis technique of directional waves. The spectral description for the linear system of ISSC-TLP in the frequency domain is sufficient to completely define the motion responses and tension variations. This is because both the wave inputs and responses are stationary Gaussian random processes, of which the statistical properties in the amplitude domain are well known. The numerical results for the linear motion responses and tension variations in regular waves are compared with the experimental and numerical ones, which are obtained in the literature. The results of comparison confirmed the validity of the proposed approach.

Dynamic Response Characteristics of Tension Leg Platforms in Waves (인장계류식 해양구조물의 동적응답 특성)

  • Lee, C.H.;Son, Y.K.
    • Journal of Power System Engineering
    • /
    • v.2 no.2
    • /
    • pp.81-86
    • /
    • 1998
  • The dynamic response characteristics of Tension Leg Platforms(TLPs) in waves are examined for presenting the basic data for design of TLPs. The numerical approach is based on a combination of the three dimensional source distribution method and the dynamic response analysis method, in which the superstructure of TLP is assumed to be flexible instead of rigid. Restoring forces by hydrostatic pressure on the submerged surface of a TLP have been accurately calculated by excluding the assumption of the slender body theory. The hydrodynamic interactions among TLP members, such as columns and pontoons, and the structural damping are included in the motion and structural analysis. Numerical results are compared with the experimental ones, which are obtained in the literature, concerning the motion and tension responses of a TLP in waves. The results of comparison confirmed the validity of the proposed approach.

  • PDF

Reliability Analysis of Floating Offshore Structures -structural systems reliability to change in uncertainty of design variables- (부유식 해양구조물의 신뢰성해석 -설계변수의 불확실성 변화에 대한 구조시스템 신뢰성-)

  • Lee, Joo-Sung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.224-231
    • /
    • 1993
  • This paper is concerned with the influence of changes in stochastic parameters of the important resistance variables such as the strength modelling parameter and material and geometric properties, on the system safety level of TLP structures. The effect of parameters governing the post-ultimate behaviour is also addressed. An extended incremental load method is employed for the present study, which has been successfully applied to the system reliability analysis of continuous structures. The Hutton Field TLP and its one variant called herein TLP-B, are chosen as TLP models in this paper. The results of several parameteric studies lead to useful conclusions relating to the importance of reducing uncertainties in strength formulae and relating the importance of component post-ultimate behaviour to the systems reliability of such structures.

  • PDF

Structural system simulation and control via NN based fuzzy model

  • Tsai, Pei-Wei;Hayat, T.;Ahmad, B.;Chen, Cheng-Wu
    • Structural Engineering and Mechanics
    • /
    • v.56 no.3
    • /
    • pp.385-407
    • /
    • 2015
  • This paper deals with the problem of the global stabilization for a class of tension leg platform (TLP) nonlinear control systems. It is well known that, in general, the global asymptotic stability of the TLP subsystems does not imply the global asymptotic stability of the composite closed-loop system. Finding system parameters for stabilizing the control system is also an issue need to be concerned. In this paper, we give additional sufficient conditions for the global stabilization of a TLP nonlinear system. In particular, we consider a class of NN based Takagi-Sugeno (TS) fuzzy TLP systems. Using the so-called parallel distributed compensation (PDC) controller, we prove that this class of systems can be globally asymptotically stable. The proper design of system parameters are found by a swarm intelligence algorithm called Evolved Bat Algorithm (EBA). An illustrative example is given to show the applicability of the main result.

Effects of Sodium Chloride and Macromolecules in Chemically Defined Culture Medium on In Vitro Development of Bovine Embryos (단순한정배양액 내의 Sodium Chloride 및 Macromolecules가 소 수정란의 체외발육에 미치는 영향)

  • 노상호
    • Journal of Embryo Transfer
    • /
    • v.15 no.2
    • /
    • pp.191-196
    • /
    • 2000
  • the present study was carried out to develop a completely defined culture system and determine if high NaCl concentrations in defined (PVA added) or semi-defined (BSA added) medium is toxic to bovine embryos. Oocytes from slaughterhouse ovaries were matured and fertilized in vitro. After 30 h of insemination, only 2-cell stage embryos were selected and cultured for this experiment. The culture media used were as follows : TLP(114 mM of NaCl) + BSA (3 mg/ml), TLP + PVA (1 mg/ml), mTLP(96 mM of NaCl) + BSA, mTLP + PVA. Six to ten embryos were placed into a 30$\mu$1 drop of each medium and the embryos were examined at 10 day post-insemination without medium renewal. The experiment was replicated 4 times. All data were analyzed by chi-square. There were no significant differences among TLP-BSA, mTLP-BSA and mTLP-PVA in blastocyst development (21.6, 17.2 and 20.2%), respectively. Also, no differences were obtained in hatching rates (11.7, 9.9 and 12.2%), respecitively. However, there were significant differences between TLP-PVA (1.7% and 0.6%) and other group in blastocyst formation and hatching rates, respectively (p<0.01). Development of in vitro produced embryos cultured in BSA containing medium was not affected by high NaCl concentration, but in the completely defined medium, embryonic development was highly affected by NaCl. This study shows that reduced NaCl concentration in completely defined medium is beneficial for development of bovine pre-implantation embryos in vitro.

  • PDF

A Dynamic structural response analysis of tension leg platforms in current and waves (조류와 파랑 중에서의 TLP의 동적구조응답해석)

  • Lee, S.C.;Goo, J.S.;Ha, Y.R.;Jo, H.J.
    • Journal of Power System Engineering
    • /
    • v.16 no.1
    • /
    • pp.65-71
    • /
    • 2012
  • A numerical procedure is described for predicting the dynamic structural responses of tension leg platforms(TLPs) in current and waves. The developed numerical approach is based on a combination of the three dimensional source distribution method and the dynamic structural analysis method, in which the superstructure of the TLPs is assumed to be flexible instead of rigid. The hydrodynamic interactions among TLP members, such as columns and pontoons, and the structural damping are included in the dynamic structural analysis. The equations of motion of a whole structure are formulated using element-fixed coordinate systems which have the origin at the nodes of the each hull element and move parallel to a space-fixed coordinate system. The dynamic structural responses of a TLP were analyzed in the case of including the current or not including the one in waves and the effects of current on the TLP were investigated.