• Title/Summary/Keyword: TLBO

Search Result 39, Processing Time 0.021 seconds

Structural optimization with teaching-learning-based optimization algorithm

  • Dede, Tayfun;Ayvaz, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.47 no.4
    • /
    • pp.495-511
    • /
    • 2013
  • In this paper, a new efficient optimization algorithm called Teaching-Learning-Based Optimization (TLBO) is used for the least weight design of trusses with continuous design variables. The TLBO algorithm is based on the effect of the influence of a teacher on the output of learners in a class. Several truss structures are analyzed to show the efficiency of the TLBO algorithm and the results are compared with those reported in the literature. It is concluded that the TLBO algorithm presented in this study can be effectively used in the weight minimization of truss structures.

A Hybrid Optimized Deep Learning Techniques for Analyzing Mammograms

  • Bandaru, Satish Babu;Deivarajan, Natarajasivan;Gatram, Rama Mohan Babu
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.73-82
    • /
    • 2022
  • Early detection continues to be the mainstay of breast cancer control as well as the improvement of its treatment. Even so, the absence of cancer symptoms at the onset has early detection quite challenging. Therefore, various researchers continue to focus on cancer as a topic of health to try and make improvements from the perspectives of diagnosis, prevention, and treatment. This research's chief goal is development of a system with deep learning for classification of the breast cancer as non-malignant and malignant using mammogram images. The following two distinct approaches: the first one with the utilization of patches of the Region of Interest (ROI), and the second one with the utilization of the overall images is used. The proposed system is composed of the following two distinct stages: the pre-processing stage and the Convolution Neural Network (CNN) building stage. Of late, the use of meta-heuristic optimization algorithms has accomplished a lot of progress in resolving these problems. Teaching-Learning Based Optimization algorithm (TIBO) meta-heuristic was originally employed for resolving problems of continuous optimization. This work has offered the proposals of novel methods for training the Residual Network (ResNet) as well as the CNN based on the TLBO and the Genetic Algorithm (GA). The classification of breast cancer can be enhanced with direct application of the hybrid TLBO- GA. For this hybrid algorithm, the TLBO, i.e., a core component, will combine the following three distinct operators of the GA: coding, crossover, and mutation. In the TLBO, there is a representation of the optimization solutions as students. On the other hand, the hybrid TLBO-GA will have further division of the students as follows: the top students, the ordinary students, and the poor students. The experiments demonstrated that the proposed hybrid TLBO-GA is more effective than TLBO and GA.

Employing TLBO and SCE for optimal prediction of the compressive strength of concrete

  • Zhao, Yinghao;Moayedi, Hossein;Bahiraei, Mehdi;Foong, Loke Kok
    • Smart Structures and Systems
    • /
    • v.26 no.6
    • /
    • pp.753-763
    • /
    • 2020
  • The early prediction of Compressive Strength of Concrete (CSC) is a significant task in the civil engineering construction projects. This study, therefore, is dedicated to introducing two novel hybrids of neural computing, namely Shuffled Complex Evolution (SCE) and Teaching-Learning-Based Optimization (TLBO) for predicting the CSC. The algorithms are applied to a Multi-Layer Perceptron (MLP) network to create the SCE-MLP and TLBO-MLP ensembles. The results revealed that, first, intelligent models can properly handle analyzing and generalizing the non-linear relationship between the CSC and its influential parameters. For example, the smallest and largest values of the CSC were 17.19 and 58.53 MPa, and the outputs of the MLP, SCE-MLP, and TLBO-MLP range in [17.61, 54.36], [17.69, 55.55] and [18.07, 53.83], respectively. Second, applying the SCE and TLBO optimizers resulted in increasing the correlation of the MLP products from 93.58 to 97.32 and 97.22%, respectively. The prediction error was also reduced by around 34 and 31% which indicates the high efficiency of these algorithms. Moreover, regarding the computation time needed to implement the SCE-MLP and TLBO-MLP models, the SCE is a considerably more time-efficient optimizer. Nevertheless, both suggested models can be promising substitutes for laboratory and destructive CSC evaluative models.

Buckling load optimization of laminated plates resting on Pasternak foundation using TLBO

  • Topal, Umut;Vo-Duy, Trung;Dede, Tayfun;Nazarimofrad, Ebrahim
    • Structural Engineering and Mechanics
    • /
    • v.67 no.6
    • /
    • pp.617-628
    • /
    • 2018
  • This paper deals with the maximization of the critical buckling load of simply supported antisymmetric angle-ply plates resting on Pasternak foundation subjected to compressive loads using teaching learning based optimization method (TLBO). The first order shear deformation theory is used to obtain governing equations of the laminated plate. In the present optimization problem, the objective function is to maximize the buckling load factor and the design variables are the fibre orientation angles in the layers. Computer programming is developed in the MATLAB environment to estimate optimum stacking sequences of laminated plates. A comparison also has been performed between the TLBO, genetic algorithm (GA) and differential evolution algorithm (DE). Some examples are solved to show the applicability and usefulness of the TLBO for maximizing the buckling load of the plate via finding optimum stacking sequences of the plate. Additionally, the influences of different number of layers, plate aspect ratios, foundation parameters and load ratios on the optimal solutions are investigated.

Quantification and location damage detection of plane and space truss using residual force method and teaching-learning based optimization algorithm

  • Shallan, Osman;Hamdy, Osman
    • Structural Engineering and Mechanics
    • /
    • v.81 no.2
    • /
    • pp.195-203
    • /
    • 2022
  • This paper presents the quantification and location damage detection of plane and space truss structures in a two-phase method to reduce the computations efforts significantly. In the first phase, a proposed damage indicator based on the residual force vector concept is used to get the suspected damaged members. In the second phase, using damage quantification as a variable, a teaching-learning based optimization algorithm (TLBO) is used to obtain the damage quantification value of the suspected members obtained in the first phase. TLBO is a relatively modern algorithm that has proved distinguished in solving optimization problems. For more verification of TLBO effeciency, the classical particle swarm optimization (PSO) is used in the second phase to make a comparison between TLBO and PSO algorithms. As it is clear, the first phase reduces the search space in the second phase, leading to considerable reduction in computations efforts. The method is applied on three examples, including plane and space trusses. Results have proved the capability of the proposed method to precisely detect the quantification and location of damage easily with low computational efforts, and the efficiency of TLBO in comparison to the classical PSO.

Design of pin jointed structures using teaching-learning based optimization

  • Togan, Vedat
    • Structural Engineering and Mechanics
    • /
    • v.47 no.2
    • /
    • pp.209-225
    • /
    • 2013
  • A procedure employing a Teaching-Learning Based Optimization (TLBO) method is developed to design discrete pin jointed structures. TLBO process consists of two parts: the first part represents learning from teacher and the second part illustrates learning by interaction among the learners. The results are compared with those obtained using other various evolutionary optimization methods considering the best solution, average solution, and computational effort. Consequently, the TLBO algorithm works effectively and demonstrates remarkable performance for the optimization of engineering design applications.

Teaching learning-based optimization for design of cantilever retaining walls

  • Temur, Rasim;Bekdas, Gebrail
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.763-783
    • /
    • 2016
  • A methodology based on Teaching Learning-Based Optimization (TLBO) algorithm is proposed for optimum design of reinforced concrete retaining walls. The objective function is to minimize total material cost including concrete and steel per unit length of the retaining walls. The requirements of the American Concrete Institute (ACI 318-05-Building code requirements for structural concrete) are considered for reinforced concrete (RC) design. During the optimization process, totally twenty-nine design constraints composed from stability, flexural moment capacity, shear strength capacity and RC design requirements such as minimum and maximum reinforcement ratio, development length of reinforcement are checked. Comparing to other nature-inspired algorithm, TLBO is a simple algorithm without parameters entered by users and self-adjusting ranges without intervention of users. In numerical examples, a retaining wall taken from the documented researches is optimized and the several effects (backfill slope angle, internal friction angle of retaining soil and surcharge load) on the optimum results are also investigated in the study. As a conclusion, TLBO based methods are feasible.

Design of optimal PID controller for the reverse osmosis using teacher-learner-based-optimization

  • Rathore, Natwar S.;Singh, V.P.
    • Membrane and Water Treatment
    • /
    • v.9 no.2
    • /
    • pp.129-136
    • /
    • 2018
  • In this contribution, the control of multivariable reverse osmosis (RO) desalination plant using proportional-integral-derivative (PID) controllers is presented. First, feed-forward compensators are designed using simplified decoupling method and then the PID controllers are tuned for flux (flow-rate) and conductivity (salinity). The tuning of PID controllers is accomplished by minimization of the integral of squared error (ISE). The ISEs are minimized using a recently proposed algorithm named as teacher-learner-based-optimization (TLBO). TLBO algorithm is used due to being simple and being free from algorithm-specific parameters. A comparative analysis is carried out to prove the supremacy of TLBO algorithm over other state-of-art algorithms like particle swarm optimization (PSO), artificial bee colony (ABC) and differential evolution (DE). The simulation results and comparisons show that the purposed method performs better in terms of performance and can successfully be applied for tuning of PID controllers for RO desalination plants.

An efficient hybrid TLBO-PSO-ANN for fast damage identification in steel beam structures using IGA

  • Khatir, S.;Khatir, T.;Boutchicha, D.;Le Thanh, C.;Tran-Ngoc, H.;Bui, T.Q.;Capozucca, R.;Abdel-Wahab, M.
    • Smart Structures and Systems
    • /
    • v.25 no.5
    • /
    • pp.605-617
    • /
    • 2020
  • The existence of damages in structures causes changes in the physical properties by reducing the modal parameters. In this paper, we develop a two-stages approach based on normalized Modal Strain Energy Damage Indicator (nMSEDI) for quick applications to predict the location of damage. A two-dimensional IsoGeometric Analysis (2D-IGA), Machine Learning Algorithm (MLA) and optimization techniques are combined to create a new tool. In the first stage, we introduce a modified damage identification technique based on frequencies using nMSEDI to locate the potential of damaged elements. In the second stage, after eliminating the healthy elements, the damage index values from nMSEDI are considered as input in the damage quantification algorithm. The hybrid of Teaching-Learning-Based Optimization (TLBO) with Artificial Neural Network (ANN) and Particle Swarm Optimization (PSO) are used along with nMSEDI. The objective of TLBO is to estimate the parameters of PSO-ANN to find a good training based on actual damage and estimated damage. The IGA model is updated using experimental results based on stiffness and mass matrix using the difference between calculated and measured frequencies as objective function. The feasibility and efficiency of nMSEDI-PSO-ANN after finding the best parameters by TLBO are demonstrated through the comparison with nMSEDI-IGA for different scenarios. The result of the analyses indicates that the proposed approach can be used to determine correctly the severity of damage in beam structures.

A teaching learning based optimization for truss structures with frequency constraints

  • Dede, Tayfun;Togan, Vedat
    • Structural Engineering and Mechanics
    • /
    • v.53 no.4
    • /
    • pp.833-845
    • /
    • 2015
  • Natural frequencies of the structural systems should be far away from the excitation frequency in order to avoid or reduce the destructive effects of dynamic loads on structures. To accomplish this goal, a structural optimization on size and shape has been performed considering frequency constraints. Such an optimization problem has highly nonlinear property. Thus, the quality of the solution is not independent of the optimization technique to be applied. This study presents the performance evaluation of the recently proposed meta-heuristic algorithm called Teaching Learning Based Optimization (TLBO) as an optimization engine in the weight optimization of the truss structures under frequency constraints. Some examples regarding the optimization of trusses on shape and size with frequency constraints are solved. Also, the results obtained are tabulated for comparison. The results demonstrated that the performance of the TLBO is satisfactory. Additionally, TLBO is better than other methods in some cases.