• Title/Summary/Keyword: TIR Lens

Search Result 12, Processing Time 0.03 seconds

Fabrication of 365 nm Wavelength High Transmittance Silicone Resin TIR Lens and High Directivity Light Source Module for Exposure System (365 nm 파장대역 고투과율 실리콘 수지 TIR 렌즈 및 고지향성 노광기 광원모듈 제작)

  • Sung, Jun Ho;Yu, Soon Jae;Anil, Kawan;Jung, Mee Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.4
    • /
    • pp.267-271
    • /
    • 2018
  • A high directivity TIR (total internal reflection) lens in the UV-A region was designed using a silicone resin, and a UV light source module with a maximum irradiation density of $150mW/cm^2$ was fabricated. The beam angle of the TIR lens was designed to be $8.04^{\circ}$ and the maximum diameter of the TIR lens was Ø13.5. A silicone resin having a UV transmittance of 93% and a refractive index of 1.4 at a wavelength of 365 nm was used, and the lens was manufactured using an aluminum mold, from which silicone could be easily released. The module was fabricated in a metal printed circuit board of COB (chip on board) type using a $0.75{\times}0.75mm^2$ UV chip. A jig was used to adjust the focal length between lens and chip and to fix the position of the lens. The optical characteristics such as illumination distributions of the lens and module were designed using 'LightTools' optical simulation software. The heat dissipation system was designed to use a forced-air cooling method using a heat-sink and fan.

Design Method for a Total Internal Reflection LED Lens with Double Freeform Surfaces for Narrow and Uniform Illumination

  • Yang, Jae Suk;Park, Jae-Hyeung;O, Beom-Hoan;Park, Se-Geun;Lee, Seung Gol
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.614-622
    • /
    • 2016
  • In this paper, we propose a novel differential equation method for designing a total internal reflection (TIR) LED lens with double freeform surfaces. A complete set of simultaneous differential equations for the method is derived from the condition for minimizing the Fresnel loss, illumination models, Snell’s Law of ray propagation, and a new constraint on the incident angle of a ray on the light-exiting surface of the lens. The last constraint is essential to complete the set of simultaneous differential equations. By adopting the TIR structure and applying the condition for minimizing the Fresnel loss, it is expected that the proposed TIR LED lens can have a high luminous flux efficiency, even though its beam-spread angle is narrow. To validate the proposed method, three TIR LED lenses with beam-spread angles of less than 22.6° have been designed, and their performances evaluated by ray tracing. Their luminous flux efficiencies could be obviously increased by at least 35% and 5%, compared to conventional LED lenses with a single freeform surface and with double freeform surfaces, respectively.

Fabrication of Silicone Resin TIR Linear Lens and Development of 365 nm Wavelength UV LED Light Source (실리콘 수지 TIR 선형 렌즈 제작 및 365 nm 파장대역 UV LED 조사기 광원 개발)

  • Sung, Jun Ho;Yu, Soon Jae;Anil, Kawan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.6
    • /
    • pp.433-436
    • /
    • 2018
  • A total internal reflection (TIR) linear lens of size $190(W){\times}5(D){\times}2.1(H)mm^3$ has a directivity of $25^{\circ}$ and was made of a polydimethysiloxane (PDMS) silicone resin with a refractive index of 1.4 and a transmittance of 93% at 365 nm UV wavelength. A light source with a size of $190{\times}25.5mm^2$ was fabricated by installing a TIR linear lens on a chip on board (COB) type LED module mounted with a $1.1{\times}1.1mm^2$ size UV LED. The optical characteristics of the light source showed a maximum irradiation density of $3,840mW/cm^2$ at a working distance of 5 mm and a high uniformity of 91.6% over a $150{\times}25mm^2$ irradiation area. The thermal characteristics of the light source were measured at a supply current of 500 mA. The saturation temperature was reached after 30 min of operation, and measured to be $95^{\circ}C$.

A Optical System Design of LED Marine Lanterns Based on a TIR Collimator Lens (전반사 렌즈를 이용한 LED 등명기 광학계 설계)

  • Go, Dong Hyun;Lee, Yoon Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.11
    • /
    • pp.1-5
    • /
    • 2015
  • In this paper, we propose the optical system design for a medium sized LED marine lanterns which simplifies the multi-layer structure into a single structure. In order to satisfy the target fixed intensity(35,000cd) and vertical divergence($-2.5^{\circ}{\sim}-4.0^{\circ}$, $+2.5^{\circ}{\sim}+4.0^{\circ}$), we use the total internal reflection collimator lens. And a Monte Carlo simulation has been utilized to optimize a condition of a LED package, TIR lens and outside lens. The computer simulation results indicated that this LED marine lanterns can produce of a fixed intensity(35,382cd) and vertical divergence($-3.1^{\circ}{\sim}+2.5^{\circ}$). Using the this optical system, we achieve the target value of LED lanterns.

A study on the Design and Application of a TIR Lens for Realizing A Compact Spot-Type UV Curing Machine Optical System (컴팩트한 Spot형 UV 경화기 광학계를 구현하기 위한 TIR 렌즈 설계 및 응용에 관한 연구)

  • Kim, Yu-Rim;Heo, Seung-Ye;Lee, Sang-Wook;Kim, Wan-Chin
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.2
    • /
    • pp.255-264
    • /
    • 2022
  • The conventional spot-type UV curing machine configures a collimator optical system using a plurality of lenses so that the light beam is incident through an optical cable. In order to increase the transmission light efficiency, a collimator optical system composed of three or more lenses is required, and accordingly, it is difficult to align the optical system, and it is difficult to implement the system compactly. In this study, a single TIR lens collimator that can realize the same level of spot diameter and light efficiency as the conventional collimator optical system composed of three lenses was designed. Through this, the light efficiency at the curing area with the minimum illuminance deviation was 33.2 %, which was similar to the performance of the reference collimator optical system, and the illuminance deviation on the curing area was 18.8 %, ensuring acceptable performance. In addition, by arranging a fly-eye lens with field flattening function at the front end of the condensing lens, the effective curing area diameter was reduced from 5.0 mm to 3.0 mm, enabling higher curing energy density to be realized. In addition, it was confirmed that the illuminance deviation can be greatly improved to a level of 14.4%.

Fabrication of a Water Sterilization System Utilizing a 275 nm-wavelength UVC LED and TIR Lens-equipped Light Source (275 nm UVC LED와 TIR 렌즈 장착 광원을 이용하는 물 살균장치 제작)

  • Kawan Anil;Seung Hui Yu;Seung Hoon Yu;J. A. Park;I. S. Shin;S. J. Lee;Y. B. Kim;Y. B. Kown;D. G. Han;Soon Jae Yu;Heetae Kim;Seong Bae Park
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.1
    • /
    • pp.84-87
    • /
    • 2024
  • A water sterilization system is developed utilizing a 275 nm-wavelength LED light source equipped with a TIR lens. The system's light source is constructed by combining a 275 nm-wavelength UVC LED, known for its germicidal properties, with a TIR lens having a direction angle of 6.8 degrees. The optical simulation software 'LightTools' is employed to design and optimize the intensity of deep ultraviolet sterilizing light irradiation, its distribution, and sterilization capacity. In the inactivation experiment with E. coli, the water sterilizer system achieved a sterilization rate of 78.92 % while maintaining a water flow capacity of 50 L/min. Compared to the conventional mercury lamp light source water sterilizer system, the UVC LED water sterilizer system addresses environmental concerns related to mercury usage and offers advantages in terms of lifespan and durability.

  • PDF

Design of a Bar-type TIR Lens Having a Freeform Surface for Forming a Line Beam Using an LED Light Source (LED 광원 사용 시 line beam 형성을 위한 자유 곡면 bar type의 TIR lens 설계)

  • Seo, Jin-Hee;Lee, Jeong-Su;Kim, Seo-Young;Jeong, You-Jin;Park, Hye-Jin;Nam, Deuk-Young;Jung, Mee-Suk
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.6
    • /
    • pp.295-303
    • /
    • 2017
  • In this paper, we have studied a method of forming a line beam using a UV LED. The existing linear-type UV LED curing optical system is composed of several cylindrical lenses, but problems such as optical system alignment, enlargement of the module, efficiency, etc. may arise in the future. As an alternative to these problems, a bar-type TIR lens having a freeform surface only in the y-axis direction is designed, to verify that it shows advantages in maximum illuminance, uniformity of illuminance, and flux efficiency.

Study of a Searchlight Lens to Improve Optical Performance and Fabricability (광학 성능 및 제작성 향상을 위한 탐조등 렌즈 연구)

  • Jo, Ye-Ji;Jung, Mee-Suk
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.2
    • /
    • pp.81-87
    • /
    • 2020
  • This study examines the design technology of searchlight optics featuring narrow beam angles and high luminous intensities. Halogen and xenon lamps, which are conventional searchlight sources, are vulnerable to vibration and shock, and are large and heavy, making them difficult to transport. In addition, the parabolic mirror located at the rear of the searchlight has the disadvantages of poor performance and low light efficiency, due to the assembly error produced during manufacturing. To solve this problem, a 1-kW halogen lamp is replaced by a 150-W high-power COB LED, and a high-efficiency TIR lens is designed to meet the target performance. Afterward, the TIR lens array is proposed to solve the surface error generated during optical injection. After a prototype is manufactured based on the designed optical system, the optical performance is confirmed to be excellent, by comparing it to that of a commercial halogen-lamp searchlight.

LED Lens for Rectangular Beam with Small Divergence Angles

  • Liu, Dianhong;Zhang, Xiaohui;Zhang, Shuang
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.739-744
    • /
    • 2016
  • We have designed a new TIR(Total Internal Reflection) structure for generating an LED lens which can produce a rectangular beam with small divergence angle in two perpendicular directions for an optical guidance system. The lens can control the divergence angle in the horizontal direction to be a small value of about $8^{\circ}$ with a $1mm{\times}1mm$ LED source, also in the vertical direction it can be about $7^{\circ}$, with optical collection efficiency higher than 0.83. After the lens is manufactured, the work demonstrates that the lens is suitable for an optical guidance system.

Fabrication of High Density and High Uniformity Irradiation Light Source for Exposure Curing System Using 365 nm and 385 nm Wavelength SMD LED and High Transmittance Silicone Resin TIR Bar Type Lens (365 nm 및 385 nm SMD LED와 TIR 바형 렌즈를 이용하는 고밀도 고균일성 특성의 경화용 광원모듈 제작 )

  • Pil Hong Jeong;Beom Jin Kim;Yeong Jin Kim;Dong Gyu Jeon;Hyo Min Kim;Jae Hyeon Kim;Hyeong Min Kim;Gyu Seong Lee;Kawan Anil;Eung Ryul Park;Soon Jae Yu;Min Jun Ann;Do Won Hwang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.394-399
    • /
    • 2024
  • An irradiator is developed using two UVA wavelength ranges of SMD LEDs as a curing light source. This module has dimensions of 545×111×300 mm3 and is equipped with a TIR bar-shaped lens made of PDMS silicone resin. The developed irradiator offers high uniformity, with 89% in the centerline of the horizontal axis direction, for two different wavelength ranges of 365 nm and 385 nm. The radiation intensity from the light source module shows highly directional characteristics, and the irradiator provides a maximum irradiance of 1,634 mW/cm2 at a working distance of 50 mm. During the initial 5 minutes of operation, the irradiance experiences a rapid decrease. However, this issue is addressed by optimizing the LED's current reduction characteristics and managing the Transistor's temperature rise in the constant current circuit. After continuous operation for approximately 60 minutes. The highest temperature, near the central part of the irradiating surface, reaches 69.7℃, while the lowest temperature, near the edges, is 41.1℃.