• 제목/요약/키워드: TIG Welding

검색결과 215건 처리시간 0.031초

AlZnMgCu0.5 합금의 Electron Beam 용접성에 관한 연구 (Investigations on electron beam weldability of AlZnMgCu0.5 alloys)

  • 배석천
    • Journal of Welding and Joining
    • /
    • 제15권4호
    • /
    • pp.166-177
    • /
    • 1997
  • The high strength AlZnMgCu0.5 alloy is a light metal with good age hardenability, and has a high tensile and yielding strength. Therefore, it can be used for structures requiring high speciple strength. Even though high strength AlZnMgCu alloy has good mechanical properties, it has a lot of problems in TIG and MIG welding processes. Since lots of high heat absorption is introduced into the weldment during TIG and MIG processes, the microstructural variation and hot cracks take place in heat affected zone. Therefore, the mechanical properties of high strength AlZnMgCu0.5 alloy can be degraded in weldment and heat affected zone. Welding process utilizing high density heat source such as electron beam should be developed to reduce pore and hot cracking, whichare usually accompanied by MIG and TIG welding processes. In this work, electron beam welding process were used with or without AlMg4.5Mn as filler material to avoid the degradation of mechanical properties. Mechanical and metallurgical characteristics were also studied in electron beam weldment and heat affected zone. Moreover hot cracking mechanism was also investigated.

  • PDF

TIG용접에서 가스력을 이용한 비드형상제어를 위한 실드가스 노즐의 최적 형상에 관한 연구 (II) - 벤투리 노즐의 위보기 자세 용융금속제어 효과 - (A Study on Optimum Shape of Shield Gas Nozzle for Bead Shape Control in TIG Welding using Gas Force (II) - Effect of Molten Metal Control by Venturi Nozzle in Overhead Position -)

  • 함효식;서지석;최윤환;이연원;조상명
    • Journal of Welding and Joining
    • /
    • 제29권3호
    • /
    • pp.58-63
    • /
    • 2011
  • Bead shape control with gas force process has been developed to overcome the concave back bead in pipe orbital welding. However, It is impossible to make a convex back bead using the existing gas nozzle, because it has high gas-consuming and low gas force. The purpose of this paper, to develop optimum shape of nozzle which to reduce the consumption of gas, maximizing the shield gas force with low cost and high productivity coincide the Green welding. In this paper venturi-type nozzle was compared with existing CP-type nozzle by TIG pulse welding in overhead position. As a result, CP-type occurs the wormholes in the overhead position, but the Venturi-type without the pore and formed a good bead appearance.

Effect of Welding Processes on Corrosion Resistance of UNS S31803 Duplex Stainless Steel

  • Chiu, Liu-Ho;Hsieh, Wen-Chin
    • Corrosion Science and Technology
    • /
    • 제2권1호
    • /
    • pp.36-40
    • /
    • 2003
  • An attractive combination of corrosion resistance and mechanical properties in the temperature range -50 to $250^{\circ}C$ is offered by duplex stainless steel. However, undesirable secondary precipitation phase such as $\sigma$, $\gamma_2$ and $Cr_2N$ may taken place at the cooling stage from the welding processes. Therefore, this paper describes the influence of different welding procedures such as manual metal arc welding (MMA), tungsten inert gas welding (TIG) and vacuum brazing on corrosion resistance of the welded joint for UNS S31803 duplex stainless steel. Microstructure and chemical compositions of the welded joint were examined. The weight loss of specimens immersed in 6% $FeCl_3$ solution at $47.5^{\circ}C$ for 24-hours was determined and used to evaluate the pitting resistance of duplex stainless steel and their welds. The region of heat-affected zone of specimen obtained by the MMA is much wider than that resulted from TIG, therefore, the weight loss of welds by MMA was larger than that of weld by TIG. The weight loss of brazed specimens cooled from slow cooling rate was larger than those of specimens cooled from high cooling rate, because the precipitation of $\sigma$ phase. Beside that, the weight loss of brazed specimen is greater than those of the welded specimens. The galvanic corrosion was observed in brazed duplex stainless steel joints in the chloride solution.

선급강재의 레이저 용접특성에 관한 기초실험 - HYBRID 용접시 LASER-ARC거리 변화에 따른 용융특성 변화에 관한 실험 (Basic Welding Characteristics by Nd-YAG Laser Beam on AH32)

  • 방한서;주성민;김영표;김형;편산성이
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.279-283
    • /
    • 2003
  • As the state of the art in recent years Laser-Arc Hybrid welding is tried actively because of its various economical and technical advantages. In this study, melting tendencies according to the variation of laser-arc distance are investigated in case of YAG laser-TIG Hybrid welding process of AH32 ship structural steel. Nd-YAG laser with a laser beam power of 3KW is used and varied laser-arc distance 0mm to 10mm with fixing the TIG current as l00A. There is certain distance between laser and TIG elecrode to improve welding heat input and also increase the penetration.

  • PDF

저탄소강 SS41 연속파형 Nd:YAG 레이저 겹치기 용접의 기공제어 기술 (The Porosity Control Technology of Lap Joint Welding Using Continuous Wave Nd:YAG Laser of the Low Carbon Steel SS41)

  • 이가람;황찬연;양윤석;박은경;유영태
    • 한국생산제조학회지
    • /
    • 제22권4호
    • /
    • pp.665-672
    • /
    • 2013
  • With the development of advanced processing technology, laser processing systems, which require high-quality precision processing, have attracted considerable attention. Although laser equipment is expensive, it enables quick processing and less deformation of materials. This technology is often applied to secondary batteries, which has thus farinvolved the use of argon tungsten inert gas (TIG) welding. However, the welding characteristics of argon TIG welding are not yet good, and a laser is used for welding to address this problem. In this study, lap-joint welding was conducted, and the desired welding characteristics were obtained when the laser power was 1800W and the laser beam travel speed was 1.8 m/min. Lap-joint welding was conducted on Ni-coated SS41. Two cases were compared. No pores were observed in the Ni-coated SS41 lap-joint welding part, and cracks appeared from the lap-joints. Moreover, the pole rod and tap were welded together in a T-joint form to improve the output of the secondary battery. T-joint laser welding showed better welding characteristics than TIG welding.

루트 갭과 단차에 의한 플라즈마 아크 용접성에 관한 연구 (A Study on Plasma Arc Weldability by Root Gap and Misalignment)

  • 김대주;김경주;백호성
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 추계학술발표대회 개요집
    • /
    • pp.138-140
    • /
    • 2005
  • Plasma arc welding(PAW) technology is a proven process that has already been adopted by other industrial fields and recently has been considered to join the tank structure of LNG carrier. The purpose of this study is to introduce PAW process for the root welding of stainless steel pipes instead of TIG welding. There are distinctive features of the PAW compared to TIG welding; higher energy density that can increase welding speed by more than twofold, and longer arc length that can be controlled to trace seam line easily because of allowable gap between workpiece and torch. However, PAW process is also very sensitive to the root gap and misalignment due to the characteristics of long and narrow arc shape. So, we have done various experiments to establish the allowable fit-up condition by changing welding parameters including arc length, with or without filler metal, groove shape, and obtained satisfactory result.

  • PDF

TIG-FSW 하이브리드 용접을 이용한 이종재 맞대기 용접부의 잔류응력 해석 (Analysis of Residual Stress on Dissimilar Butt Joint by TIG Assisted Hybrid Friction Stir Welding)

  • 방희선;노찬승;엠 에스 비조이;방한서;이윤기
    • Journal of Welding and Joining
    • /
    • 제30권2호
    • /
    • pp.47-53
    • /
    • 2012
  • This paper aimed to study and understand the mechanical phenomena of thermal elasto-plastic behavior on the dissimilar butt joint (Al 6061-T6 and STS304) by TIG assisted Friction Stir Welding. Heat conduction and residual stress analysis is carried out using in-house solver. Two-dimensional results of the heat distribution and residual stresses in dissimilar joint for particular tool geometry and material properties are presented. The predicted stress along longitudinal direction in Al 6061-T6 and STS304 are approximately between 12-15% of their respective yield strengths. A comparison is made between experimentally measured and numerically predicted equivalent residual stress values.

The Effect of Heat Input and Shielding Gas Composition on Corrosion Resistance of TIG Weld Metal of New Lean Duplex Stainless Steel S82441

  • Niagaj, J.;Brytan, Z.
    • Corrosion Science and Technology
    • /
    • 제16권6호
    • /
    • pp.278-284
    • /
    • 2017
  • The effects of TIG welding and post-treatment procedures on the microstructure and the pitting corrosion resistance of welded lean duplex stainless steel S82441 were investigated. Autogenous TIG welding was used with different amounts of heat input and shielding gases such as Ar, and mixtures of $Ar-N_2$ and Ar-He. The addition of 5% to 15% of nitrogen to argon practically did not affect the level of the pitting corrosion resistance. However, the application of gas mixtures (50% Ar + 50% He) resulted in a significant decrease in pitting corrosion resistance. We found that increased current (200 A and 250 A) led to lower values of CPT of welds compared with welds obtained with 50 A, 100 A and 150 A. In addition, the removal of the weld surface layer (0.2 ~ 0.3 mm thickness) in most cases not only resulted in a significant increase in resistance to the pitting corrosion but also post-treatment of weld, implying that corrosion resistance depended on factors such as surface roughness or the presence of undesirable oxides.