• Title/Summary/Keyword: TI

Search Result 14,638, Processing Time 0.045 seconds

Synthesis of (Ti,Al)N Powder by the Direct Nitridation(II) (직접질화법에 의한 (Ti,Al)N계 복합질화물의 합성(II))

  • Cho, Young-Soo;Lee, Young-Ki;Sohn, Yong-Un;Park, Kyong-Ho;Kim, Seok-Yoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.3
    • /
    • pp.219-227
    • /
    • 1996
  • The purpose of this research is to develop the technology for the synthesis of (Ti,Al)N powder, which shows simultaneously the excellent properties of TiN and AlN, from the Ti-Al intermetallic compounds by the direct nitriding method. The effects of variables such as temperature, Ti-Al intermetallic compounds ($TiAl_3$, TiAl and $Ti_3Al$) were investigated by TG, XRD and SEM. The (Ti,Al)N powder can be easily synthesized from the intermetallic compounds by the direct nitriding method. Among the intermetallic compounds, the nitriding behavior increased with TiAl> $Ti_3Al$ > $TiAl_3$, as the difference of diffusion coefficient for nitrogen in each materials. The ternary nitride such as $Ti_2AlN$ and $Ti_3Al_2N_2$ can be synthesized by the direct nitriding method, although the ternary nitride coexist with TiN and AlN. The ternary nitrides are stable below $1400^{\circ}C$, but these are gradually decomposed into TiN and AlN above $1400^{\circ}C$.

  • PDF

Fabrication, Microstructures and High-Strain-Rate Properties of TiC-Reinforced Titanium Matrix Composites

  • 신현호;박홍래;장순남
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.259-259
    • /
    • 1999
  • TiC ceramic particulate-reinforced titanium matrix composites were fabricated and the resultant densification, microstructure, and static and dynamic mechanical properties were studied. Comparing Ti with TiH₂powders as host materials for TiC ceramic reinforcement by pressureless vacuum sintering, TiH₂-started composites showed better sinterability and resistance to both elastic and plastic deformation than Ti-started ones. When TiH₂and TiH₂-45 vol.%TiC samples were hot pressed, TiH₂matrices transformed to alpha prime Ti and alpha Ti phase, respectively. It is interpreted that the diffusion of an alpha stabilizer carbon from TiC into the matrix is one of the plausible reasons far such a microstructural difference. The 0.2% offset yield strengths of the hot pressed TiH₂and TiH₂-45 vol.%TiC samples were 1008 and 1446 MPa, respectively, in a static compressive mode (strain rate of 1×$10^{-3}$/s). Dynamic compressive strengths of the samples were 1600 and 2060 MPa, respectively, at a strain rate of 4×10³/s.

A comparative study on mechanical properties of TiN and TiAlN films prepared by Arc Ion Plating Technique (아크 이온 플레이팅법에 의해 증착된 TiN과 TiAlN 박막의 기계적 특성 비교)

  • 윤석영;이윤복;김광호
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.4
    • /
    • pp.199-205
    • /
    • 2002
  • TiN and TiAlN films were deposited on SKD 11 steel substrates by an arc ion plating (AIP) technique. The crystallinity and morphology for the deposited films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The mechanical properties of both films were investigated through the indentation, impact, and wear test. Those films fairly adherent to SKD 11 steel substrate, showed hardness values of 2300 $\pm$ 100kg/$\textrm{mm}^2$ and 3200 $\pm$ 100kg/$\textrm{mm}^2$ with a load of 25g, respectively. During impact test, TiAlN films showed much superior impact wear resistance to TiN films. It could be suggested that the TiN films was failed relatively by plastic deformation with oxidation during impact test, while TiAlN films was failed by brittle fracture and resisted the oxidation by the impact energy. The friction coefficient of TiAlN films became lower than that of TiN films at high sliding speed condition although it was higher than that of TiN films at low speed. Therefore, TiAlN films was suggested to be more advantageous than TiN films for high speed machining fields.

Synthesis of $BaTi_4O_9, Ba_2Ti_9O_{20}$ and $BaTi_5O_{11}$ Compounds by Coprecipitation Method and Their Electrical and Thermal Properties (공침법에 의한 $BaTi_4O_9, Ba_2Ti_9O_{20}$$BaTi_5O_{11}$화합물의 합성 및 그의 전기적, 열적 특성)

  • 김종옥;손우창;전성용;이경희;이병하
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.9
    • /
    • pp.1005-1011
    • /
    • 1994
  • The three different composition of BaTi4O9, Ba2Ti9O20 and BaTi5O11 were prepared by coprecipitation process, and then the dielectric properties of these compounds were measured at low microwave frequencies. The powder showing high level of purity was synthesised by the coprecipition reaction of BaCl2 and TiCl4 where (NH4)2CO3 and NH4OH were used as a deflocculent. Followings are the result of this study: 1. The sintering temperature increased with increasing TiO2 content. 2. BaTi4O9 powder were synthesized as a single phase by this processing technique, but the resultant Ba2Ti9O20 and BaTi5O11 phase existed with Ba2Ti9O20 and BaTi5O11 phases. 3. Single phase BaTi4O9 showed high dielectric constant value of 35, high Q value of 8100.

  • PDF

Effects of the thin $SiO_2$ film on the formation of $TiN/TiSi_2$ bilayer formed by rapid thermal annealing (급속열처리에 의한 $TiN/TiSi_2$ 이중구조막 혈성에 대한 Ti-Si 계면의 얇은 산화막의 영향)

  • Lee, Cheol-Jin;Sung, Han-Young;Sung, Yung-Kwon
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1223-1225
    • /
    • 1994
  • The properties of $TiN/TiSi_2$ bilayer formed by a rapid thermal anneal ing is investigated when thin $SiO_2$ film exists at the Ti-Si interface. The competitive reaction for the $TiN/TiSi_2$ bilayer occurs above $600^{\circ}C$. The thickness of the $TiSi_2$ layer decreases with increasing $SiO_2$ film thickness while the TiN layer increases at the competitive reaction. The composition of TiN layer is changed to the $TiN_xO_y$ film due to the thin $SiO_2$ layer at the Ti-Si interface while the structure of the TiN and $TiSi_2$ layers was not changed.

  • PDF

High-Temperature Oxidation Behavior of TiN-Ti5Si3 Ceramic Composites Manufactured by Polymer Pyrolysis (고분자 열분해 방법으로 제조된 TiN-Ti5Si3 세라믹 복합체의 고온 산화 거동)

  • Kim, Beom-Seob;Kim, Deug-Joong;Lee, Dong-Bok
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.8 s.291
    • /
    • pp.486-491
    • /
    • 2006
  • A new $TiN-Ti_5Si_3$ bulk composite was synthesized from preceramic, inorganic polymer (methylpolysilsesquioxane) and $TiH_2$ filler powders via polymer pyrolysis. Using this process, ceramics with high melting points can be produced relatively easily to a near net shape. The $TiN-Ti_5Si_3$ composite oxidized slowly during heating to $1000^{\circ}C$. During heating at the temperatures of at 700 and $800^{\circ}C$, TiN oxidized to Rutile-$TiO_2$ whereas $Ti_5Si_3$ resisted to oxidation. The oxide scale formed consisted primarily of $TiO_2$ containing $Ti_5Si_3$.

Comparison of Degradation Behaviors for Titanium-based Hard Coatings by Pulsed Laser Thermal Shock

  • Jeon, Seol;Lee, Heesoo
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.523-527
    • /
    • 2013
  • Ti-based coatings following laser ablation were studied to compare degradation behaviors by thermomechanical stress. TiN, TiCN, and TiAlN coatings were degraded by a Nd:YAG pulsed laser with an increase in the laser pulses. A decrease in the hardness was identified as the pulses increased, and the hardness levels were in the order of TiAlN > TiCN > TiN. The TiN showed cracks on the surface, and cracks with pores formed along the cracks were observed in the TiCN. The dominant degradation behavior of the TiAlN was surface pore formation. EDS results revealed that diffusion of substrate atoms to the coating surface occurred in the TiN. Delamination occurred in the TiN and TiCN, while the TiAlN which has higher thermal stability than the TiN and TiCN maintained adhesion to the substrate. It was considered that the decrease in the hardness of the Ti-based hard coatings is attributed to surface cracking and the diffusion of substrate atoms.

The Dielectric Properties of $BaTiO_3/SrTiO_3$ Heterolayered Thick Films ($BaTiO_3/SrTiO_3$ 이종층 후막의 유전특성)

  • Nam, Sung-Pill;Lee, Sang-Chul;Lee, Sung-Gap;Lee, Young-Hie
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.58-60
    • /
    • 2004
  • The $BaTiO_3/SrTiO_3$ heterolayered thick films were fabricated on alumina substrate by screening printing method. The obtained films were sintered at $1400^{\circ}C$ with bottom electrode of Pt for 2 hours. The structural and electrical properties of $BaTiO_3/SrTiO_3$ heterolayered thick films were compared with pure $BaTiO_3$ and $SrTiO_3$ films. The (Ba,Sr)$TiO_3$ phase was appeared at the $BaTiO_3/SrTiO_3$ heterolayered thick films. The thickness of $BaTiO_3/SrTiO_3$ heterolayered thick film, obtained by one printing, was about $50{\mu}m$. The dielectric constant and dielectric loss of the $BaTiO_3/SrTiO_3$ heterolayered thick films were about 1964, 5.5% at 1KHz, respectively.

  • PDF

Corrosion Characteristics of TiN/Ti Multilayer Coated Ti-30Ta-xZr Alloy for Biomaterials (TiN/Ti 다층막 코팅된 생체용 Ti-30Ta-xZr 합금의 부식특성)

  • Kim, Y.U.;Cho, J.Y.;Choe, H.C.
    • Corrosion Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.162-169
    • /
    • 2009
  • Pure titanium and its alloys are drastically used in implant materials due to their excellent mechanical properties, high corrosion resistance and good biocompatibility. However, the widely used Ti-6Al-4V is found to release toxic ions (Al and V) into the body, leading to undesirable long-term effects. Ti-6Al-4V has much higher elastic modulus than cortical bone. Therefore, titanium alloys with low elastic modulus have been developed as biomaterials to minimize stress shielding. For this reason, Ti-30Ta-xZr alloy systems have been studied in this study. The Ti-30Ta containing Zr(5, 10 and 15 wt%) were 10 times melted to improve chemical homogeneity by using a vacuum furnace and then homogenized for 24 hrs at $1000^{\circ}C$. The specimens were cut and polished for corrosion test and Ti coating and then coated with TiN, respectively, by using DC magnetron sputtering method. The analyses of coated surface were carried out by field emission scanning electron microscope(FE-SEM). The electrochemical characteristics were examined using potentiodynamic (- 1500 mV~+ 2000 mV) and AC impedance spectroscopy(100 kHz~10 mHz) in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The equiaxed structure was changed to needle-like structure with increasing Zr content. The surface defects and structures were covered with TiN/Ti coated layer. From the polarization behavior in 0.9% NaCl solution, The corrosion current density of Ti-30Ta-xZr alloys decreased as Zr content increased, whereas, the corrosion potential of Ti-30Ta-xZr alloys increased as Zr content increased. The corrosion resistance of TiN/Ti-coated Ti-30Ta-xZr alloys were higher than that of the TiN-coated Ti-30Ta-xZr alloys. From the AC impedance in 0.9% NaCl solution, polarization resistance($R_p$) value of TiN/Ti coated Ti-30Ta-xZr alloys showed higher than that of TiN-coated Ti-30Ta-xZr alloys.

Formation of $TiN/TiSi_2$-bilayer by PVD method (PVD 방법에 의한 $TiN/TiSi_2$-bilayer 형성)

  • Choe, Chi-Gyu;Gang, Min-Seong;Kim, Deok-Su;Lee, Gwang-Man;Hwang, Chan-Yong;Seo, Gyeong-Su;Lee, Jeong-Yong;Kim, Geon-Ho
    • Korean Journal of Materials Research
    • /
    • v.8 no.12
    • /
    • pp.1182-1189
    • /
    • 1998
  • High quality $TiN/TiSi_2$-bilayers were formed on the Si(100) substrate at room temperature and at $600^{\circ}C$ first by coevaporation of stoichiometric Si and Ti(Si:Ti = 2:1) fellowed by Ti reactive deposition in N, gas ambient, and in situ annealing in ultrahigh vacuum. Stoichiometric $Ti_{0.}N_{0.5}$, films with (111) texture and $C54-TiSi_2$ films were grown by annealing at temperatures above $700^{\circ}C$. $TiN/C54-TiSi_2$/Si(100) interface was clear and flat without agglomoration, and $CS4-TiSi_2$ film was epitxailly grown. The sheet resistance of the $TiN/TiSi_2$- bilayer decreased as the annealing temperature increased and about $2.5\omega/\textrm{cm}^2$ was obtained from the sample annealed over $700^{\circ}C$.

  • PDF