• 제목/요약/키워드: THC-COOH

검색결과 3건 처리시간 0.017초

타액 중 ${\Delta}^9$-Tetrahydrocannabinol 및 11-Nor-9-carboxy-${\Delta}^9$-Tetrahydrocannabinol의 분석법 확립 및 안정성 검토 (Development of Quantification Method and Stability of ${\Delta}^9$-Tetrahydrocannabinol and 11-Nor-9-carboxy-${\Delta}^9$-Tetrahydrocannabinol in Oral Fluid)

  • 최혜영;백승경;장문희;최화경;정희선
    • 약학회지
    • /
    • 제54권4호
    • /
    • pp.226-231
    • /
    • 2010
  • Oral fluid has become increasingly popular as an alternative specimen in the field of driving under the influence of drugs (DUID) and work place drug testing. In this study, an analytical method for the detection and quantification of ${\Delta}^9$-tetrahydrocannabinol (THC) and its metabolite, 11-nor-9-carboxy-${\Delta}^9$-tetrahydrocannabinol (THC-COOH) in oral fluid by SPE and GC-MS was established and fully validated. The stability of THC and THC-COOH in oral fluid during storage was also determined by examining the THC and THC-COOH concentration changes depending on time and container materials. Oral fluid samples were kept over 21 days at room temperature, $-4^{\circ}C$ and $-20^{\circ}C$ in two different specimen collection tubes; glass and polypropylene tubes. Three replicates for each condition with different temperature and types of a container were analyzed at five different time points over 21 days. When oral fluid samples were stored in glass tubes, the loss of both THC and THC-COOH was less than 10% at all room temperature, $-4^{\circ}C$ and $-20^{\circ}C$. However, in polypropylene tubes, the loss of both THC and THC-COOH increased significantly over the study period. In particular, the concentration of THC decreased more rapidly than that of THC-COOH at room temperature and the maximal percentage of THC lost was 90.3% after 21 days. The result indicates that it would be necessary to collect oral fluid samples in glass containers and cool the samples until analysis in order to prevent the degradation of analytes.

가스크로마토그라피/질량분석기에 의한 모발중 대마성분 분석 (Analysis of $\triangle^9$-Tetrahydrocannabinol and 11-nor-9-carboxytetrahydrocannabinol in Hair by Gas Chromatography/Mass Spectrometry)

  • 양원경;한은영;박용훈;임미애;정희선
    • 약학회지
    • /
    • 제48권3호
    • /
    • pp.207-212
    • /
    • 2004
  • An analytic method was developed for the quantitation of $\Delta$$^{9}-$ tetrahydrocannabinol (THC) and 11-nor-9-carboxy THC (THC-COOH) in human hair. After hair samples were pulverized using Freezer Mill, deuterated internal standards were added and digested in 1 N NaOH at $100^{\circ}C$ water bath for 30 min. Digest solutions were extracted by 5 ml hexane:ethyl acetate (90:10) after acidification with acetic acid. The organic phase was evaporated under N 2 and derivatized by BSTFA (with 1% TMCS) at $85^{\circ}C$ for 45 min. The derivatized solution was separated on HP-5MS column ($30m{\times}0.25mm{\times}0.25mm$) and detected using EI-GC-MS with selective ion monitoring mode. The assay of calibration was ranged from 5 to 100 ng/50 mg hair ($r^2$>0.99) for THC and THC-COOH. Within and between-run precision were calculated at 6, 30, 60 ng/50 mg hair with coefficients of variation less than 11%. Within and between run accuracies at the same concentrations were$\pm$14% and $\pm$30% of target for both analytes, respectively. Absolute and relative recovery at 10 and 100 ng were 60∼91%. The method was used to detect and quantify THC and THC-COOH in cannabis abuser's hairs (N = 16) and SRM (N=5, THC 1 ng/mg, NIST). We detected THC and THC-COOH in only one hair sample. In SRM, % accuracy was 93% (range 86∼103%) and precision (% CV) was 8.14. We began to set up a quantitative analysis of THC and THC-COOH using EI-GC-MS. Continuously, we need to modify and develop this method in order to apply for identification in cannanbis users' hair.

GC-NCI-MS/MS를 이용한 모발 중 대마 대사체 분석의 측정불확도 평가 (Uncertainty evaluation of the analysis of 11-nor-9-carboxy-Δ9-tetrahydrocannabinol in hair by GC-NCI-MS/MS)

  • 김진영;이재일;정재철;서용준;인문교
    • 분석과학
    • /
    • 제24권1호
    • /
    • pp.1-9
    • /
    • 2011
  • 대마 흡연 여부 확인을 위해 사용되는 모발 중 대마 대사체 정량분석 결과의 측정불확도를 평가하였다. 대마초 성분 중 활성물질은 ${\Delta}^9$-tetrahydrocannabinol이며 대사과정을 거쳐 생성된 주요 대사체는 11-nor-9-carboxy-${\Delta}^9$-tetrahydrocannabinol (THC-COOH)이다. 따라서 생체 대사물질인 THC-COOH는 대마 흡연 여부를 판단하는 지표물질로 사용되고 있다. 실험방법은 모발의 세척, 건조, 질량측정, 세절, 가수분해, 비드를 이용한 액체-액체 추출, 유도체화 반응 및 기기분석 과정으로 구성되었다. 측정의 소급성이 유지될 수 있도록 상위 규정기로부터 하위 측정기까지 교정을 통해 확보하였다. 측정불확도 평가에 앞서 정량분석시 측정값에 영향을 주는 인자들을 찾아내고 각각의 요소들이 측정결과에 어떤 영향을 주는가를 살펴보았다. 산출 결과, 재현성, 회수율, 검정곡선, 표준물질, 질량측정의 요소 순으로 불확도에 영향을 미치고 있음을 확인하였고 재현성의 요소가 측정불확도에 가장 큰 영향을 미치고 있었다. 실제 대마 복용자의 모발을 분석한 결과 대마 대사체 농도 측정값에 대한 오차 범위의 상대불확도는 17% 이였으며, 본 연구의 측정불확도 평가 결과는 향후 분석방법의 개선 및 측정결과의 신뢰도 제고를 위한 근거자료로 활용할 예정이다.