• 제목/요약/키워드: TGF-β

검색결과 252건 처리시간 0.022초

High-plasticity mineral trioxide aggregate and its effects on M1 and M2 macrophage viability and adherence, phagocyte activity, production of reactive oxygen species, and cytokines

  • Betania Canal Vasconcellos;Layara Cristine Tomaz Tavares;Danilo Couto da Silva;Francielen Oliveira Fonseca ;Francine Benetti ;Antonio Paulino Ribeiro Sobrinho ;Warley Luciano Fonseca Tavares
    • Restorative Dentistry and Endodontics
    • /
    • 제48권1호
    • /
    • pp.6.1-6.14
    • /
    • 2023
  • Objectives: This study evaluated the effects of high-plasticity mineral trioxide aggregate (MTA-HP) on the activity of M1 and M2 macrophages, compared to white MTA (Angelus). Materials and Methods: Peritoneal inflammatory M1 (from C57BL/6 mice) and M2 (from BALB/c mice) macrophages were cultured in the presence of the tested materials. Cell viability (MTT and trypan blue assays), adhesion, phagocytosis, reactive oxygen species (ROS) production, and tumor necrosis factor (TNF)-α and transforming growth factor (TGF)-β production were evaluated. Parametric analysis of variance and the non-parametric Kruskal-Wallis test were used. Results were considered significant when p < 0.05. Results: The MTT assay revealed a significant decrease in M1 metabolism with MTA-HP at 24 hours, and with MTA and MTA-HP later. The trypan blue assay showed significantly fewer live M1 at 48 hours and live M2 at 48 and 72 hours with MTA-HP, compared to MTA. M1 and M2 adherence and phagocytosis showed no significant differences compared to control for both materials. Zymosan A stimulated ROS production by macrophages. In the absence of interferon-γ, TNF-α production by M1 did not significantly differ between groups. For M2, both materials showed higher TNF-α production in the presence of the stimulus, but without significant between-group differences. Likewise, TGF-β production by M1 and M2 macrophages was not significantly different between the groups. Conclusions: M1 and M2 macrophages presented different viability in response to MTA and MTA-HP at different time points. Introducing a plasticizer into the MTA vehicle did not interfere with the activity of M1 and M2 macrophages.

20(S)-ginsenoside Rg3 exerts anti-fibrotic effect after myocardial infarction by alleviation of fibroblasts proliferation and collagen deposition through TGFBR1 signaling pathways

  • Honglin Xu;Haifeng Miao;Guanghong Chen;Guoyong Zhang;Yue Hua;Yuting Wu;Tong Xu;Xin Han;Changlei Hu;Mingjie Pang;Leyi Tan;Bin Liu;Yingchun Zhou
    • Journal of Ginseng Research
    • /
    • 제47권6호
    • /
    • pp.743-754
    • /
    • 2023
  • Background: Myocardial fibrosis post-myocardial infarction (MI) can induce maladaptive cardiac remodeling as well as heart failure. Although 20(S)-ginsenoside Rg3 (Rg3) has been applied to cardiovascular diseases, its efficacy and specific molecular mechanism in myocardial fibrosis are largely unknown. Herein, we aimed to explore whether TGFBR1 signaling was involved in Rg3's anti-fibrotic effect post-MI. Methods: Left anterior descending (LAD) coronary artery ligation-induced MI mice and TGF-β1-stimulated primary cardiac fibroblasts (CFs) were adopted. Echocardiography, hematoxlin-eosin and Masson staining, Western-blot and immunohistochemistry, CCK8 and Edu were used to study the effects of Rg3 on myocardial fibrosis and TGFBR1 signaling. The combination mechanism of Rg3 and TGFBR1 was explored by surface plasmon resonance imaging (SPRi). Moreover, myocardial Tgfbr1-deficient mice and TGFBR1 adenovirus were adopted to confirm the pharmacological mechanism of Rg3. Results: In vivo experiments, Rg3 ameliorated myocardial fibrosis and hypertrophy and enhanced cardiac function. Rg3-TGFBR1 had the 1.78×10-7 M equilibrium dissociation constant based on SPRi analysis, and Rg3 inhibited the activation of TGFBR1/Smads signaling dose-dependently. Cardiac-specific Tgfbr1 knockdown abolished Rg3's protection against myocardial fibrosis post-MI. In addition, Rg3 downregulated the TGF-β1-mediated CFs growth together with collagen production in vitro through TGFBR1 signaling. Moreover, TGFBR1 adenovirus partially blocked the inhibitory effect of Rg3. Conclusion: Rg3 improves myocardial fibrosis and cardiac function through suppressing CFs proliferation along with collagen deposition by inactivation of TGFBR1 pathway.

SV40의 T항원으로 불사화한 지방줄기세포주로부터 생산한 배양액의 항염증 효능 (Anti-inflammatory Effect of Conditioned Medium From an Immortalized Adipose-derived Stem Cell Line by SV40 T Antigen)

  • 이예진;이소영;정민경;박성문;김동완
    • 생명과학회지
    • /
    • 제34권3호
    • /
    • pp.170-178
    • /
    • 2024
  • 지방줄기세포는 다양한 세포로 분화할 수 있어서 세포치료제로 주목받고 있으나 세포 증식 속도가 느리고 세포의 수명이 짧아 임상 적용에 어려움이 있다. 본 연구팀은 선행연구에서 지방줄기세포의 증식속도를 향상시키고 세포 수명을 연장시키기 위해 SV40의 T항원 유전자를 사람의 ADSC에 도입하여 불사화시킨 ADSC 세포주를 제작하였으며 ADSC-T라고 명명하였다. 본 연구에서는 ADSC-T 세포의 분화능력을 검증하고, ADSC-T 세포를 배양하여 획득한 무혈청 배양액의 항염증 효능을 평가하였다. 그 결과, ADSC-T 세포주는 지방세포와 골세포로 분화할 수 있는 능력을 보유하고 있어 줄기세포의 가장 중요한 특징인 분화능력을 유지하고 있음을 알 수 있었다. 또한 ADSC-T의 배양액은 염증을 유발하는 NF-κB의 활성을 억제하였고, NF-κB의 표적 유전자인 COX-2와 iNOS의 발현도 억제하였다. 또한 ADSC-T 배양액은 ERK, JNK, p38의 인산화를 저해하여 세포 내 염증 유발 신호 전달 회로인 MAPKs 회로를 억제하는 것으로 나타났으며, 염증을 유발하는 cytokine인 TGF-β, TNF-α, IL-6, IL-13의 발현도 억제하는 효과를 보여 강한 항염증 효능이 있을 것으로 추정되었다. 실제로, 아토피 모델 쥐인 Nc/Nga 마우스를 DNCB로 처리하여 아토피 피부염을 유발한 뒤 ADSC-T 배양액을 도포한 결과 강한 치료 효과를 나타내었다. 이상의 결과로부터, 불사화된 ADSC-T 세포주는 지방줄기세포의 장점과 효능을 유지하고 있으며 향후 지방줄기세포의 세포 수급 문제를 해결할 수 있을 뿐 아니라 임상 적용이 가능한 배양액의 생산에도 널리 이용될 수 있을 것으로 사료된다.

Fermented Protaetia brevitarsis Larvae Ameliorates Chronic Ethanol-Induced Hepatotoxicity in Mice via AMPK and TLR-4/TGF-β1 Pathways

  • Hyo Lim Lee;Jong Min Kim;Min Ji Go;Seung Gyum Joo;Tae Yoon Kim;Han Su Lee;Ju Hui Kim;Jin-Sung Son;Ho Jin Heo
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권3호
    • /
    • pp.606-621
    • /
    • 2024
  • This study evaluated the hepatoprotective effect of fermented Protaetia brevitarsis larvae (FPB) in ethanol-induced liver injury mice. As a result of amino acids in FPB, 18 types of amino acids including essential amino acids were identified. In the results of in vitro tests, FPB increased alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activities. In addition, FPB treatment increased cell viability on ethanol- and H2O2-induced HepG2 cells. FPB ameliorated serum biomarkers related to hepatoxicity including glutamic oxaloacetic transaminase, glutamine pyruvic transaminase, total bilirubin, and lactate dehydrogenase and lipid metabolism including triglyceride, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol. Also, FPB controlled ethanol metabolism enzymes by regulating the protein expression levels of ADH, ALDH, and cytochrome P450 2E1 in liver tissue. FPB protected hepatic oxidative stress by improving malondialdehyde content, reduced glutathione, and superoxide dismutase levels. In addition, FPB reversed mitochondrial dysfunction by regulating reactive oxygen species production, mitochondrial membrane potential, and ATP levels. FPB protected ethanol-induced apoptosis, fatty liver, and hepatic inflammation through p-AMP-activated protein kinase and TLR-4/NF-κB signaling pathways. Furthermore, FPB prevented hepatic fibrosis by decreasing TGF-β1/Smad pathway. In summary, these results suggest that FPB might be a potential prophylactic agent for the treatment of alcoholic liver disease via preventing liver injury such as fatty liver, hepatic inflammation due to chronic ethanol-induced oxidative stress.

형질변형성장인자가 손상골 재생능에 미치는 영향에 관한 실험적 연구 (THE EFFECTS OF TGF-$\beta$1 ON THE BONE REGENERATION IN GUINEA PIG MANDIBLE)

  • 이병도;황의환;이상래;홍정표
    • 치과방사선
    • /
    • 제25권2호
    • /
    • pp.423-435
    • /
    • 1995
  • The purpose of this study was to observe the effect of TGF-βl, which promotes differentiation and proliferation of osteoblasts, on bone regeneration. Experimental bone defects that measured 3 mm in diameter were created on the mandibles of guinea pig by removal of bone with the use of trephine burs. In one side of mandibular body, the experimental groups, bone defects were grafted with Biogran(Orthovita Co., U.S.A) and TGF-β1(R&D System Co., U.SA). In the remaining side of the mandiblar body, the control groups, bone defects were grafted with only Biogran. Guinea pigs in the control and experimental groups were serially terminated by fours on the 3 days, the 1 week, the 2 weeks, the 3 weeks, and the 4 weeks after experiment, and both sides of the mandibular bodies were removed and fixed with 10% neutral formalin. They were decalcified and embedded in paraffin as using the usual method. The specimen sectioned and stained with hematoxylin and eosin. Also, they were radiographed with a soft X -ray apparatus. The obtained results were as follows; 1. Hemorrhagic condition, observed in the granulation tissues, disappeared on the 1 week after experiment in both groups, and more prominent in the experimental group. The granulation tissues of the experimental group had larger number of cells than those of the control group. 2. Osteoblastic differentiation in the margin of grafted material and adjacent bone was observed on the 1 week after experiment in both groups. Also, bone formation was observed in immature form on the 1 week after experiment. and more prominent in the experimental group. 3. In the polarizing microscopic examination, bone matrix was very loose on the 1 week after experiment, but increase in density with time, and more prominent in the experimental group. 4. In the microradiographic examination, newly formed bone was observed in the experimental group on the 2 weeks after experiment, and this was observed earlier than in the control group. Newly formed bone was increased with time and defected area was markedly decreased on the 4 weeks after experiment.

  • PDF

A Novel Pyrazolo[3,4-d]pyrimidine Induces Heme Oxygenase-1 and Exerts Anti-Inflammatory and Neuroprotective Effects

  • Lee, Ji Ae;Kwon, Young-Won;Kim, Hye Ri;Shin, Nari;Son, Hyo Jin;Cheong, Chan Seong;Kim, Dong Jin;Hwang, Onyou
    • Molecules and Cells
    • /
    • 제45권3호
    • /
    • pp.134-147
    • /
    • 2022
  • The anti-oxidant enzyme heme oxygenase-1 (HO-1) is known to exert anti-inflammatory effects. From a library of pyrazolo[3,4-d]pyrimidines, we identified a novel compound KKC080096 that upregulated HO-1 at the mRNA and protein levels in microglial BV-2 cells. KKC080096 exhibited anti-inflammatory effects via suppressing nitric oxide, interleukin1β (IL-1β), and iNOS production in lipopolysaccharide (LPS)-challenged cells. It inhibited the phosphorylation of IKK and MAP kinases (p38, JNK, ERK), which trigger inflammatory signaling, and whose activities are inhibited by HO-1. Further, KKC080096 upregulated anti-inflammatory marker (Arg1, YM1, CD206, IL-10, transforming growth factor-β [TGF-β]) expression. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridinetreated mice, KKC080096 lowered microglial activation, protected the nigral dopaminergic neurons, and nigral damage-associated motor deficits. Next, we elucidated the mechanisms by which KKC080096 upregulated HO-1. KKC080096 induced the phosphorylation of AMPK and its known upstream kinases LKB1 and CaMKKbeta, and pharmacological inhibition of AMPK activity reduced the effects of KKC080096 on HO-1 expression and LPS-induced NO generation, suggesting that KKC080096-induced HO-1 upregulation involves LKB1/AMPK and CaMKKbeta/AMPK pathway activation. Further, KKC080096 caused an increase in cellular Nrf2 level, bound to Keap1 (Nrf2 inhibitor protein) with high affinity, and blocked Keap1-Nrf2 interaction. This Nrf2 activation resulted in concurrent induction of HO-1 and other Nrf2-targeted antioxidant enzymes in BV-2 and in dopaminergic CATH.a cells. These results indicate that KKC080096 is a potential therapeutic for oxidative stress-and inflammation-related neurodegenerative disorders such as Parkinson's disease.

스트레스로 유발된 무균 염증이 우울증 발생에 미치는 영향 (Effects of Stress-Induced Sterile Inflammation on the Development of Depression)

  • 서미경;이정구;석대현;표세영;이원희;박성우
    • 생명과학회지
    • /
    • 제33권12호
    • /
    • pp.1062-1073
    • /
    • 2023
  • 우울증은 개인과 사회에 부정적인 영향을 미치는 흔한 정신질환이지만 그 원인은 아직 명확히 밝혀져 있지 않다. 스트레스는 우울증의 주요 위험인자이며, 염증을 유발하여 우울증에 대한 취약성을 증가시키는 것으로 알려져 있다. 수많은 연구는 우울증과 염증의 강한 연관성을 제안하고 있다. 우울증 환자 혈액에서는 IL-1β, IL-6, IL-12, TNF-α 및 IFN-γ와 같은 친염증성 사이토카인이 증가하였으며, IL-4, IL-10 및 TGF-β와 같은 항염증성 사이토카인이 감소하였다. 설치류에 친염증성 사이토카인을 투여하면 우울 유사 행동이 관찰되는 반면, 항염증제를 투여하면 우울 증상이 완화된다. 이러한 연구들은 우울증의 병인에 염증의 중요성을 강조하고 있다. 우울증에서 염증이 활성화되는 기전에 관한 다양한 연구들이 진행되고 있다. 최근 연구에서는 스트레스로 유발되는 무균 염증의 중요성을 밝히고 있다. 병원균의 감염이 없는 상태에서 신체 및 심리적 스트레스로 인해 염증 과정이 활성화되는 것을 무균 염증이라 한다. 스트레스는 무균 염증을 활성화하기 위해 DAMPs (damage-associated molecular patterns)로 알려진 내인성 인자의 방출을 촉진시키며, 방출된 DAMPs는 해당 수용체인 PRRs (pattern recognition receptors)에 결합함으로서 신호전달을 통해 친염증성 사이토카인 생성을 증가시킨다. 본 종설에서 무균 염증의 조절 장애에 대한 전임상 및 임상 증거를 바탕으로 우울증에서 DAMP의 역할을 검토하고자 한다.

GPx7 ameliorates non-alcoholic steatohepatitis by regulating oxidative stress

  • Kim, Hyeon Ju;Lee, Yoseob;Fang, Sungsoon;Kim, Won;Kim, Hyo Jung;Kim, Jae-woo
    • BMB Reports
    • /
    • 제53권6호
    • /
    • pp.317-322
    • /
    • 2020
  • Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases. NAFLD can further progress to irreversible liver failure such as non-alcoholic steatohepatitis (NASH) fibrosis and cirrhosis. However, specific regulator of NASH-fibrosis has yet to be established. Here, we found that glutathione peroxidase 7 (GPx7) was markedly expressed in NASH fibrosis. Although GPx7 is an antioxidant enzyme protecting other organs, whether GPx7 plays a role in NASH fibrosis has yet to be studied. We found that knockdown of GPx7 in transforming growth factor-β (TGF-β) and free fatty acids (FFA)-treated LX-2 cells elevated the expression of pro-fibrotic and pro-inflammatory genes and collagen synthesis. Consistently, GPx7 overexpression in LX-2 cells led to the suppression of ROS production and reduced the expression of pro-fibrotic and pro-inflammatory genes. Further, NASH fibrosis induced by choline-deficient amino acid defined, high fat diet (CDAHFD) feeding was significantly accelerated by knockdown of GPx7, as evidenced by up-regulated liver fibrosis and inflammation compared with CDAHFD control mice. Collectively, these results suggest that GPx7 might be a novel therapeutic target to prevent the progression and development of NAFLD.

Triptolide improves myocardial fibrosis in rats through inhibition of nuclear factor kappa B and NLR family pyrin domain containing 3 inflammasome pathway

  • Shen, Jianyao;Ma, Hailiang;Wang, Chaoquan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권6호
    • /
    • pp.533-543
    • /
    • 2021
  • Myocardial fibrosis (MF) is the result of persistent and repeated aggravation of myocardial ischemia and hypoxia, leading to the gradual development of heart failure of chronic ischemic heart disease. Triptolide (TPL) is identified to be involved in the treatment for MF. This study aims to explore the mechanism of TPL in the treatment of MF. The MF rat model was established, subcutaneously injected with isoproterenol and treated by subcutaneous injection of TPL. The cardiac function of each group was evaluated, including LVEF, LVFS, LVES, and LVED. The expressions of ANP, BNP, inflammatory related factors (IL-1β, IL-18, TNF-α, MCP-1, VCAM1), NLRP3 inflammasome factors (NLRP3, ASC) and fibrosis related factors (TGF-β1, COL1, and COL3) in rats were dete cted. H&E staining and Masson staining were used to observe myocardial cell inflammation and fibrosis of rats. Western blot was used to detect the p-P65 and t-P65 levels in nucleoprotein of rat myocardial tissues. LVED and LVES of MF group were significantly upregulated, LVEF and LVFS were significantly downregulated, while TPL treatment reversed these trends; TPL treatment downregulated the tissue injury and improved the pathological damage of MF rats. TPL treatment downregulated the levels of inflammatory factors and fibrosis factors, and inhibited the activation of NLRP3 inflammasome. Activation of NLRP3 inflammasome or NF-κB pathway reversed the effect of TPL on MF. Collectively, TPL inhibited the activation of NLRP3 inflammasome by inhibiting NF-κB pathway, and improved MF in MF rats.

Recent progress (2015-2020) in the investigation of the pharmacological effects and mechanisms of ginsenoside Rb1, a main active ingredient in Panax ginseng Meyer

  • Lin, Zuan;Xie, Rongfang;Zhong, Chenhui;Huang, Jianyong;Shi, Peiying;Yao Hong
    • Journal of Ginseng Research
    • /
    • 제46권1호
    • /
    • pp.39-53
    • /
    • 2022
  • Ginsenoside Rb1 (Rb1), one of the most important ingredients in Panax ginseng Meyer, has been confirmed to have favorable activities, including reducing antioxidative stress, inhibiting inflammation, regulating cell autophagy and apoptosis, affecting sugar and lipid metabolism, and regulating various cytokines. This study reviewed the recent progress on the pharmacological effects and mechanisms of Rb1 against cardiovascular and nervous system diseases, diabetes, and their complications, especially those related to neurodegenerative diseases, myocardial ischemia, hypoxia injury, and traumatic brain injury. This review retrieved articles from PubMed and Web of Science that were published from 2015 to 2020. The molecular targets or pathways of the effects of Rb1 on these diseases are referring to HMGB1, GLUT4, 11β-HSD1, ERK, Akt, Notch, NF-κB, MAPK, PPAR-γ, TGF-β1/Smad pathway, PI3K/mTOR pathway, Nrf2/HO-1 pathway, Nrf2/ARE pathway, and MAPK/NF-κB pathway. The potential effects of Rb1 and its possible mechanisms against diseases were further predicted via Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and disease ontology semantic and enrichment (DOSE) analyses with the reported targets. This study provides insights into the therapeutic effects of Rb1 and its mechanisms against diseases, which is expected to help in promoting the drug development of Rb1 and its clinical applications.