• Title/Summary/Keyword: TGF-{\beta}

Search Result 780, Processing Time 0.035 seconds

A sporadic case of Loeys-Dietz syndrome type I with two novel mutations of the TGFBR2 gene

  • Ha, Jung-Sook;Kim, Yeo-Hyang
    • Clinical and Experimental Pediatrics
    • /
    • v.54 no.6
    • /
    • pp.272-275
    • /
    • 2011
  • A recently recognized connective tissue disorder, Loeys-Dietz syndrome (LDS) is a genetic aortic aneurysm syndrome caused by mutations in the transforming growth factor-receptor type I or II gene (TGFBR1 or TGFBR2). They have distinctive phenotypic abnormalities including widely spaced eyes (hypertelorism), bifid uvula or cleft palate, and arterial tortuosity with aortic aneurysm or dissection throughout the arterial tree. LDS is characterized by aggressive and rapid progression of aortic aneurysm. Therefore, the patients with distinct phenotype, marked aortic dilatation and aneurysm at early age should be suspected to be affected by LDS and rapid TGFBR gene analysis should be done. We report one child diagnosed as LDS due to typical phenotypes and two novel missense mutations of the TGFBR2 gene (c.1526G>T and c.1528A>T).

Signal Transduction in Wound Pharmacology

  • Kim, Wiliam June-Hyun;George K. Gittes;Michael T. Longaker
    • Archives of Pharmacal Research
    • /
    • v.21 no.5
    • /
    • pp.487-495
    • /
    • 1998
  • Gorwth factors such as TGF-beta, PDGF and FGF are thought to play important roles in wound healing. However, thier biological activity and signal transduction during wound repair remain poorly understood. Growth factors are often ligands for receptor tyrosine kinase and receptor serine/threonine kinases. With recent advances in signal transduction by receptor kinases, we are beginning to understand the underlying mechanism of how growth factors may regulate cutaneous wound repair. In this paper, we will describe the pharmacological effects of growth factors on wound healing, and dscuss the potential underlying signaing mechanisms. thus, we hope to provide the basis for designing more specific therapeutics for wound healing in the near future.

  • PDF

Expression of Recombinant Human Bone morphogenetic protein 2 (hBMP2) in Insect cells

  • Kim, Seong-Wan;Kim, Seong-Ryul;Park, Seung Won;Goo, Tae-Won;Choi, Kwang-Ho
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.34 no.1
    • /
    • pp.1-5
    • /
    • 2017
  • Bone morphogenetic protein 2 (BMP2) plays an important role in the development of bone and cartilage. It is involved in the hedgehog pathway, TGF beta signaling pathway, and in cytokine-cytokine receptor interaction. It is involved also in cardiac cell differentiation and epithelial to mesenchymal transition. In this study, We expressed human BMP2 (hBMP2) recombinant protein using Baculovirus Expression Vector System (BEVS) in Sf9 insect cells. The hBMP2 cDNA was cloned into baculovirus transfer vector, pBacgus-4x-1 and recombinant baculovirus was screened out through X-gal and GUS-fusions assay. Western blot analysis shown that molecular weight of hBMP2 recombinant protein was about 44.71 kDa.

A Case Report of Guided Bone Regeneration Using a Putty-type Demineralized Bone Matrix (골유도재생술에 대한 putty형 탈회 기질골 이용연구)

  • Jeong, Mi-Ae
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12a
    • /
    • pp.330-333
    • /
    • 2011
  • Allomatrix (Wright Medical Tech, Inc., USA), is a newly designed, injectable putty with a reliable demineralized bone matrix(DBM), derived from human bone. The compound contains 86% DBM and other bone growth factors such as bone morphogenic protein (BMP)-2, BMP-4, insulin-like growth factor (IGF)-1, and transforming growth factor (TGF)-${\beta}1$. It has excellent os-teoinduction abilities. In addition, DBM is known to have osteoconduction capacity as a scaffold due to its collagen matrix. This product contains a powder, which is a mix of DBM and surgical grade calcium sulfate as a carrier. A practitioner can blend the powder with calcium sulfate solution, making a putty-type material which has the advantages of ease of handling, better fixation, and no need for a membrane, because it can function as membrane itself. This study reports the clinical and radiographic results of various guided bone regeneration cases using Allomatrix, demonstrating its strong potential as a graft material.

  • PDF

Osteoporosis and Bone-related Cytokines in Dental Hygiene (종설 : 치과위생사가 알아야 할 골다공증과 골 관련 사이토카인)

  • Kim, Hoon;Hwang, Soo-Jeong;Kim, Dokyeong
    • Journal of Korean Dental Hygiene Science
    • /
    • v.3 no.2
    • /
    • pp.59-66
    • /
    • 2020
  • Dental hygienists handle periodontal tissue every day. Since periodontal tissue contains hard and soft tissue, dental hygienists need to cultivate scientific knowledge about bone tissue. This study introduces recent research results on cells and cytokines related to bone tissue. Recently, bisphosphonate-related osteonecrosis of the jaw has been reported, therefore we would like to present osteoporosis and osteoporosis treatment drugs and their side effects in this study.

Isoflavones extracted from Sophorae Fructus upregulate the growth factors, IGF-I and TGF-$\beta$ in MG-63 cells

  • Joo, Seong-Soo;Kang, Hee-Chul;Lee, Min-Won;Choi, Young-Wook;Lee, Do-Ik
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.140.3-141
    • /
    • 2003
  • Isoflavones have been a central subject in natural phytoestrogens found in Leguminosae. Their effects on bone formation and remodeling are an important turning point in that they can act like estrogen by binding on estrogen receptors on target cell surface. We, therefore, believed that isoflavones may be applied in estrogen deficiency disease such as osteoporosis in terms of estrogen replacement therapy (ERT). As commonly known, osteoporosis is one of hormonal deficiency diseases, especially in menopausal women. (omitted)

  • PDF

Current Development Status of Cytokines for Cancer Immunotherapy

  • Kyoung Song
    • Biomolecules & Therapeutics
    • /
    • v.32 no.1
    • /
    • pp.13-24
    • /
    • 2024
  • Cytokines influence the overall cancer immune cycle by triggering tumor antigen expression, antigen presenting, immune cell priming and activation, effector immune cell recruitment and infiltration to cancer, and cancer killing in the tumor microenvironment (TME). Therefore, cytokines have been considered potential anti-cancer immunotherapy, and cytokine-based anti-cancer therapies continue to be an active area of research and development in the field of cancer immunotherapy, with ongoing clinical trials exploring new strategies to improve efficacy and safety. In this review, we examine past and present clinical developments for major anticancer cytokines, including interleukins (IL-2, IL-15, IL-12, IL-21), interferons, TGF-beta, and GM-CSF. We identify the current status and changes in the technology platform being applied to cytokine-based immune anti-cancer therapeutics. Through this, we discuss the opportunities and challenges of cytokine-based immune anti-cancer treatments in the current immunotherapy market and suggest development directions to enhance the clinical use of cytokines as immuno-anticancer drugs in the future.