DOI QR코드

DOI QR Code

종설 : 치과위생사가 알아야 할 골다공증과 골 관련 사이토카인

Osteoporosis and Bone-related Cytokines in Dental Hygiene

  • 김훈 (건양대학교병원 치과) ;
  • 황수정 (건양대학교 의과학대학 치위생학과) ;
  • 김도경 (전주기전대학 치위생과)
  • Kim, Hoon (Konyang University Hospital) ;
  • Hwang, Soo-Jeong (Department of Dental Hygiene, College of Medical Science, Konyang University) ;
  • Kim, Dokyeong (Department of Dental Hygiene, Jeonju Kijeon College)
  • 투고 : 2020.12.14
  • 심사 : 2020.12.22
  • 발행 : 2020.12.31

초록

Dental hygienists handle periodontal tissue every day. Since periodontal tissue contains hard and soft tissue, dental hygienists need to cultivate scientific knowledge about bone tissue. This study introduces recent research results on cells and cytokines related to bone tissue. Recently, bisphosphonate-related osteonecrosis of the jaw has been reported, therefore we would like to present osteoporosis and osteoporosis treatment drugs and their side effects in this study.

키워드

참고문헌

  1. Hadjidakis DJ, Androulakis, II: Bone remodeling. Ann N Y Acad Sci 1092: 385-396, 2006. https://doi.org/10.1196/annals.1365.035
  2. Crockett JC, Rogers MJ. et al. Bone remodelling at a glance. J Cell Sci 124: 991-998, 2011. https://doi.org/10.1242/jcs.063032
  3. Chen X, Wang Z, et al. Osteoblast-osteoclast interactions. Connect Tissue Res 59: 99-107, 2018. https://doi.org/10.1080/03008207.2017.1290085
  4. Anagnostis P, Stevenson JC. Bisphosphonate drug holidays--when, why and for how long? Climacteric 18 Suppl 2: 32-38, 2015. https://doi.org/10.3109/13697137.2015.1099092
  5. Lamy O, Stoll D, et al. Stopping Denosumab. Curr Osteoporos Rep 17: 8-15, 2019. https://doi.org/10.1007/s11914-019-00502-4
  6. Aspenberg P. Denosumab and atypical femoral fractures. Acta Orthop 85: 1, 2014. https://doi.org/10.3109/17453674.2013.859423
  7. Park YS. Diagnosis and treatment of osteoporosis. J Korean Med Assoc 55: 1083-1094, 2012. https://doi.org/10.5124/jkma.2012.55.11.1083
  8. Anesi A, Generali L, et al. From Osteoclast Differentiation to Osteonecrosis of the Jaw: Molecular and Clinical Insights. Int J Mol Sci 20, 2019. https://doi.org/10.3390/ijms20194925
  9. Ono T, Nakashima T. Recent advances in osteoclast biology. Histochem Cell Biol 149: 325-341, 2018. https://doi.org/10.1007/s00418-018-1636-2
  10. Ikeda K, Takeshita S. The role of osteoclast differentiation and function in skeletal homeostasis. J Biochem 159: 1-8, 2016. https://doi.org/10.1093/jb/mvv112
  11. Kim JM, Lin C, et al. Osteoblast-Osteoclast Communication and Bone Homeostasis. Cells 9, 2020. https://doi.org/10.3390/cells9092073
  12. Long F. Building strong bones: molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol 13: 27-38, 2011. https://doi.org/10.1038/nrm3254
  13. Mundy GR. Regulation of bone formation by bone morphogenetic proteins and other growth factors. Clin Orthop Relat Res: 24-28, 1996. https://doi.org/10.1097/00003086-199603000-00004
  14. Filvaroff E, Erlebacher A, et al.: Inhibition of TGF-beta receptor signaling in osteoblasts leads to decreased bone remodeling and increased trabecular bone mass. Development 126: 4267-4279, 1999 https://doi.org/10.1242/dev.126.19.4267
  15. Alliston T, Choy L, et al. TGF-beta-induced repression of CBFA1 by Smad3 decreases cbfa1 and osteocalcin expression and inhibits osteoblast differentiation. Embo j 20: 2254-2272, 2001. https://doi.org/10.1093/emboj/20.9.2254
  16. Fuller K, Lean JM, et al. A role for TGFbeta(1) in osteoclast differentiation and survival. J Cell Sci 113 ( Pt 13): 2445-2453, 2000 https://doi.org/10.1242/jcs.113.13.2445
  17. Quinn JM, Itoh K, et al. Transforming growth factor beta affects osteoclast differentiation via direct and indirect actions. J Bone Miner Res 16: 1787-1794, 2001. https://doi.org/10.1359/jbmr.2001.16.10.1787
  18. Lee B, Oh Y, et al. A dual role of TGF-β in human osteoclast differentiation mediated by Smad1 versus Smad3 signaling. Immunol Lett 206: 33-40, 2019. https://doi.org/10.1016/j.imlet.2018.12.003
  19. Tominaga K, Suzuki HI. TGF-β Signaling in Cellular Senescence and Aging-Related Pathology. Int J Mol Sci 20, 2019. https://doi.org/10.3390/ijms20205002
  20. Ashraf S, Cha BH, et al. Regulation of senescence associated signaling mechanisms in chondrocytes for cartilage tissue regeneration. Osteoarthritis Cartilage 24: 196-205, 2016. https://doi.org/10.1016/j.joca.2015.07.008
  21. Cheng Q, Tang W, et al.: Circulating TGF-β1 levels are negatively correlated with sclerostin levels in early postmenopausal women. Clin Chim Acta 455: 87-92, 2016. https://doi.org/10.1016/j.cca.2016.01.025
  22. Tang SY, Alliston T. Regulation of postnatal bone homeostasis by TGFβ. Bonekey Rep 2: 255, 2013. https://doi.org/10.1038/bonekey.2012.255
  23. Erlebacher A, Derynck R. Increased expression of TGF-beta 2 in osteoblasts results in an osteoporosis-like phenotype. J Cell Biol 132: 195-210, 1996. https://doi.org/10.1083/jcb.132.1.195
  24. van der Kraan PM. The changing role of TGFβ in healthy, ageing and osteoarthritic joints. Nat Rev Rheumatol 13: 155-163, 2017. https://doi.org/10.1038/nrrheum.2016.219
  25. Khosla S. Minireview: the OPG/RANKL/RANK system. Endocrinology 142: 5050-5055, 2001. https://doi.org/10.1210/endo.142.12.8536
  26. Yasuda H, Shima N, et al.: Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A 95: 3597-3602, 1998. https://doi.org/10.1073/pnas.95.7.3597
  27. Walsh MC, Choi Y. Biology of the RANKL-RANK-OPG System in Immunity, Bone, and Beyond. Front Immunol 5: 511, 2014. https://doi.org/10.3389/fimmu.2014.00511
  28. Boyce BF, Xing L. Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther 9 Suppl 1: S1, 2007. https://doi.org/10.1186/ar2165
  29. Boyce BF, Xing L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys 473: 139-146, 2008. https://doi.org/10.1016/j.abb.2008.03.018
  30. Yasuda H, Shima N, et al.: Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology 139: 1329-1337, 1998. https://doi.org/10.1210/endo.139.3.5837
  31. Simonet WS, Lacey DL, et al.: Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89: 309-319, 1997. https://doi.org/10.1016/s0092-8674(00)80209-3
  32. Lacey DL, Tan HL, et al.: Osteoprotegerin ligand modulates murine osteoclast survival in vitro and in vivo. Am J Pathol 157: 435-448, 2000. https://doi.org/10.1016/s0002-9440(10)64556-7
  33. Tanaka H, Mine T, et al. Expression of RANKL/OPG during bone remodeling in vivo. Biochem Biophys Res Commun 411: 690-694, 2011. https://doi.org/10.1016/j.bbrc.2011.07.001
  34. Sims NA, Martin TJ. Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. Bonekey Rep 3: 481, 2014. https://doi.org/10.1038/bonekey.2013.215
  35. Kanis JA. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group. Osteoporos Int 4: 368-381, 1994. https://doi.org/10.1007/bf01622200
  36. Piscitelli P, Feola M, et al.: Ten years of hip fractures in Italy: For the first time a decreasing trend in elderly women. World J Orthop 5: 386-391, 2014. https://doi.org/10.5312/wjo.v5.i3.386
  37. Al Anouti F, Taha Z, et al. An insight into the paradigms of osteoporosis: From genetics to biomechanics. Bone Rep 11: 100216, 2019. https://doi.org/10.1016/j.bonr.2019.100216
  38. Kim Y, Kim JH, et al. [Gender difference in osteoporosis prevalence, awareness and treatment: based on the Korea national health and nutrition examination survey 2008-2011]. J Korean Acad Nurs 45: 293-305, 2015. https://doi.org/10.4040/jkan.2015.45.2.293
  39. Cremers S, Papapoulos S. Pharmacology of bisphosphonates. Bone 49: 42-49, 2011. https://doi.org/10.1016/j.bone.2011.01.014
  40. Tanaka S. Molecular understanding of pharmacological treatment of osteoporosis. EFORT Open Rev 4: 158-164, 2019. https://doi.org/10.1302/2058-5241.4.180018
  41. Fliefel R, Troltzsch M, et al. Treatment strategies and outcomes of bisphosphonate-related osteonecrosis of the jaw (BRONJ) with characterization of patients: a systematic review. Int J Oral Maxillofac Surg 44: 568-585, 2015. https://doi.org/10.1016/j.ijom.2015.01.026
  42. Han Y-S, Lee I-W, et al. Retrospective study on the bisphosphonate-related osteonecrosis of jaw. Journal of the Korean Association of Oral and Maxillofacial Surgeons 37, 2011. https://doi.org/10.5125/jkaoms.2011.37.6.470
  43. Patel V, McLeod NM, et al. Bisphosphonate osteonecrosis of the jaw--a literature review of UK policies versus international policies on bisphosphonates, risk factors and prevention. Br J Oral Maxillofac Surg 49: 251-257, 2011. https://doi.org/10.1016/j.bjoms.2010.05.007
  44. Vescovi P, Nammour S. Bisphosphonate-Related Osteonecrosis of the Jaw (BRONJ) therapy. A critical review. Minerva Stomatol 59: 181-203, 204-113, 2010
  45. Choi HS. Recent Update on RANKL Inhibitor. Korean J Med 93: 252-259, 2018. https://doi.org/10.3904/kjm.2018.93.3.252
  46. Roux S, Massicotte MH, et al. Acute hypercalcemia and excessive bone resorption following anti-RANKL withdrawal: Case report and brief literature review. Bone 120: 482-486, 2019. https://doi.org/10.1016/j.bone.2018.12.012