• 제목/요약/키워드: TFP-tree

검색결과 5건 처리시간 0.017초

Safe와 Non-safe 전력 부하 라인 분석을 위한 TFP트리 기반의 점진적 출현패턴 마이닝 (TFP tree-based Incremental Emerging Patterns Mining for Analysis of Safe and Non-safe Power Load Lines)

  • 이종범;박명호;류근호
    • Spatial Information Research
    • /
    • 제19권2호
    • /
    • pp.71-76
    • /
    • 2011
  • 본 논문에서는 특정 지역의 전력 소비 데이터를 이용하여 safe와 non-safe 전력 부하 라인의 차이를 분석하여 정의하고, 출현패턴을 사용하여 잠재되어 있는 non-safe라인을 식별하기 위하여 제한된 메모리에서 효율적으로 패턴을 찾을 수 있는 TFP-tree 기반의 점진적 출현패턴 마이닝 알고리즘을 제안한다. 특히, 두 개의 다른 최소 지지도 값을 사용하여 전력 소비 데이터와 같은 대용량 데이터에서의 마이닝 문제를 해결한다.

EPs-TFP 마이닝 기법을 이용한 단백질 Disorder/Order 지역 분류 (Protein Disorder/Order Region Classification Using EPs-TFP Mining Method)

  • 이헌규;신용호
    • 한국산업정보학회논문지
    • /
    • 제17권6호
    • /
    • pp.59-72
    • /
    • 2012
  • 단백질은 서열의 disorder 구역이 생물학적 반응을 일으켜 order로 변하는 과정에서 그 기능을 하게 되므로 서열 데이터에서 disorder 구역과 order 구역을 분리하는 것은 단백질의 3차 구조 및 특성을 예측하는데 반드시 필요하다. 따라서 이 논문에서는 효율적인 disorder와 order 구역 분류를 위해서 단백질의 특정 특징에 치우치지 않는 분류 결과를 얻으면서, 분류 속도를 향상 시킬 수 있도록 서열 데이터를 이용한 분류/예측 기법을 제안한다. 출현패턴 기반의 EPs-TFP 기법은 중복 출현패턴이 제거된 필수 출현패턴만을 이용하는 분류/예측 기법이다. 이 분류 기법은 disorder 구역의 서열 출현패턴들을 발견하며, 이러한 서열 출현패턴은 disorder 구역에서는 빈발하지만 order 구역에서는 상대적으로 빈발하지 않는 패턴들이다. 또한 제안 알고리즘의 성능 향상을 위해서 기존의 P-tree, T-tree 개념의 TFP 기법을 확장하여 분류/예측 기법으로 적용하였다. EPs-TFP 기법의 성능평가를 위해서 Disprot 4.9와 CASP 7 데이터를 활용하였고, disorder/order 구역을 분류한 결과, 민감도 73.6, 특이도 69.5, 정확도 74.2를 보였다.

대용량 데이터를 처리하기 위한 TFP-tree 기반의 점진적 빈발 패턴 마이닝 기법 (TFP-tree based Incremental Frequent Patterns mining Method for Handling Large Data Set)

  • 이종범;;신진호;류근호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 추계학술발표대회
    • /
    • pp.761-762
    • /
    • 2009
  • 이 논문에서는 점진적 마이닝 기법을 사용하여 대용량 전력 사용량 데이터로부터 빈발 패턴들을 찾아내고, 빈발 패턴들을 기반으로 하여 분류 작업을 효과적으로 완성하는데 목적을 두고 있다. 이를 위하여 본 논문에서는 TFP-tree를 기반으로 하는 점진적 빈발 패턴 마이닝 기법 및 분류 알고리즘에 대해서 설명한다.

DISCOVERY TEMPORAL FREQUENT PATTERNS USING TFP-TREE

  • Jin Long;Lee Yongmi;Seo Sungbo;Ryu Keun Ho
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.454-457
    • /
    • 2005
  • Mining frequent patterns in transaction databases, time-series databases, and many other kinds of databases has been studied popularly in data mining research. Most of the previous studies adopt an Apriori-like candidate set generation-and-test approach. However, candidate set generation is still costly, especially when there exist prolific patterns and/or long patterns. And calendar based on temporal association rules proposes the discovery of association rules along with their temporal patterns in terms of calendar schemas, but this approach is also adopt an Apriori-like candidate set generation. In this paper, we propose an efficient temporal frequent pattern mining using TFP-tree (Temporal Frequent Pattern tree). This approach has three advantages: (1) this method separates many partitions by according to maximum size domain and only scans the transaction once for reducing the I/O cost. (2) This method maintains all of transactions using FP-trees. (3) We only have the FP-trees of I-star pattern and other star pattern nodes only link them step by step for efficient mining and the saving memory. Our performance study shows that the TFP-tree is efficient and scalable for mining, and is about an order of magnitude faster than the Apriori algorithm and also faster than calendar based on temporal frequent pattern mining methods.

  • PDF

IMTAR: Incremental Mining of General Temporal Association Rules

  • Dafa-Alla, Anour F.A.;Shon, Ho-Sun;Saeed, Khalid E.K.;Piao, Minghao;Yun, Un-Il;Cheoi, Kyung-Joo;Ryu, Keun-Ho
    • Journal of Information Processing Systems
    • /
    • 제6권2호
    • /
    • pp.163-176
    • /
    • 2010
  • Nowadays due to the rapid advances in the field of information systems, transactional databases are being updated regularly and/or periodically. The knowledge discovered from these databases has to be maintained, and an incremental updating technique needs to be developed for maintaining the discovered association rules from these databases. The concept of Temporal Association Rules has been introduced to solve the problem of handling time series by including time expressions into association rules. In this paper we introduce a novel algorithm for Incremental Mining of General Temporal Association Rules (IMTAR) using an extended TFP-tree. The main benefits introduced by our algorithm are that it offers significant advantages in terms of storage and running time and it can handle the problem of mining general temporal association rules in incremental databases by building TFP-trees incrementally. It can be utilized and applied to real life application domains. We demonstrate our algorithm and its advantages in this paper.