• Title/Summary/Keyword: TFIDF

Search Result 32, Processing Time 0.021 seconds

Comparison of Machine Learning Techniques for Cyberbullying Detection on YouTube Arabic Comments

  • Alsubait, Tahani;Alfageh, Danyah
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.1-5
    • /
    • 2021
  • Cyberbullying is a problem that is faced in many cultures. Due to their popularity and interactive nature, social media platforms have also been affected by cyberbullying. Social media users from Arab countries have also reported being a target of cyberbullying. Machine learning techniques have been a prominent approach used by scientists to detect and battle this phenomenon. In this paper, we compare different machine learning algorithms for their performance in cyberbullying detection based on a labeled dataset of Arabic YouTube comments. Three machine learning models are considered, namely: Multinomial Naïve Bayes (MNB), Complement Naïve Bayes (CNB), and Linear Regression (LR). In addition, we experiment with two feature extraction methods, namely: Count Vectorizer and Tfidf Vectorizer. Our results show that, using count vectroizer feature extraction, the Logistic Regression model can outperform both Multinomial and Complement Naïve Bayes models. However, when using Tfidf vectorizer feature extraction, Complement Naive Bayes model can outperform the other two models.

Development of an intelligent skin condition diagnosis information system based on social media

  • Kim, Hyung-Hoon;Ohk, Seung-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.8
    • /
    • pp.241-251
    • /
    • 2022
  • Diagnosis and management of customer's skin condition is an important essential function in the cosmetics and beauty industry. As the social media environment spreads and generalizes to all fields of society, the interaction of questions and answers to various and delicate concerns and requirements regarding the diagnosis and management of skin conditions is being actively dealt with in the social media community. However, since social media information is very diverse and atypical big data, an intelligent skin condition diagnosis system that combines appropriate skin condition information analysis and artificial intelligence technology is necessary. In this paper, we developed the skin condition diagnosis system SCDIS to intelligently diagnose and manage the skin condition of customers by processing the text analysis information of social media into learning data. In SCDIS, an artificial neural network model, AnnTFIDF, that automatically diagnoses skin condition types using artificial neural network technology, a deep learning machine learning method, was built up and used. The performance of the artificial neural network model AnnTFIDF was analyzed using test sample data, and the accuracy of the skin condition type diagnosis prediction value showed a high performance of about 95%. Through the experimental and performance analysis results of this paper, SCDIS can be evaluated as an intelligent tool that can be used efficiently in the skin condition analysis and diagnosis management process in the cosmetic and beauty industry. And this study can be used as a basic research to solve the new technology trend, customized cosmetics manufacturing and consumer-oriented beauty industry technology demand.

Performance Evaluation on the Learning Algorithm for Automatic Classification of Q&A Documents (고객 질의 문서 자동 분류를 위한 학습 알고리즘 성능 평가)

  • Choi Jung-Min;Lee Byoung-Soo
    • The KIPS Transactions:PartD
    • /
    • v.13D no.1 s.104
    • /
    • pp.133-138
    • /
    • 2006
  • Electric commerce of surpassing the traditional one appeared before the public and has currently led the change in the management of enterprises. To establish and maintain good relations with customers, electric commerce has various channels for customers that understand what they want to and suggest it to them. The bulletin board and e-mail among em are inbound information that enterprises can directly listen to customers' opinions and are different from other channels in characters. Enterprises can effectively manage the bulletin board and e-mail by understanding customers' ideas as many as possible and provide them with optimum answers. It is one of the important factors to improve the reliability of the notice board and e-mail as well as the whole electric commerce. Therefore this thesis researches into methods to classify various kinds of documents automatically in electric commerce; they are possible to solve existing problems of the bulletin board and e-mail, to operate effectively and to manage systematically. Moreover, it researches what the most suitable algorithm is in the automatic classification of Q&A documents by experiment the classifying performance of Naive Bayesian, TFIDF, Neural Network, k-NN

A Study on Analysis of Topic Modeling using Customer Reviews based on Sharing Economy: Focusing on Sharing Parking (공유경제 기반의 고객리뷰를 이용한 토픽모델링 분석: 공유주차를 중심으로)

  • Lee, Taewon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.3
    • /
    • pp.39-51
    • /
    • 2020
  • This study will examine the social issues and consumer awareness of sharing parking through the method text mining. In this experiment, the topic by keyword was extracted and analyzed using TFIDF (Term frequency inverse document frequency) and LDA (Latent dirichlet allocation) technique. As a result of categorization by topic, citizens' complaints such as local government agreements, parking space negotiations, parking culture improvement, citizen participation, etc., played an important role in implementing shared parking services. The contribution of this study highly differentiated from previous studies that conducted exploratory studies using corporate and regional cases, and can be said to have a high academic contribution. In addition, based on the results obtained by utilizing the LDA analysis in this study, there is a practical contribution that it can be applied or utilized in establishing a sharing economy policy for revitalizing the local economy.

A Structural Analysis of Acupuncture & Moxibustion Points in the NaeGyeong Chapter of DongUiBoGam Using Text Mining (텍스트마이닝을 이용한 동의보감의 질병인식방식과 내경편 침구법 경혈 특성 분석)

  • Lee, Taehyung;Jung, Won-Mo;Lee, In-Seon;Lee, Hyejung;Kim, Namil;Chae, Younbyoung
    • Korean Journal of Acupuncture
    • /
    • v.30 no.4
    • /
    • pp.230-242
    • /
    • 2013
  • Objectives : DongUiBoGam is a representative medical literature in Korea. This research intends to structurally grasp how DongUiBoGam understands the human body and review the methods of acupuncture and moxibustion in the NaeGyeong chapter of it using text mining. Methods : The structure of DongUiBoGam was analyzed with specific parts of the book that described contents, major premises of understanding the human body, and processes of treatment. We analyzed characteristics of each acupoints in a relationship with causes of diseases & symptoms in the NaeGyeong chapter using a Term Frequency - Inverse Document Frequency(TFIDF). Results : Three different categories of pattern identification(PI) were formed after structural analysis of DongUiBoGam. Every causes of diseases & symptoms were transformed according to the three categories of PI. After analyzing the relationship between acupoints and causes of diseases & symptoms, 114 acupoints were visualized with TFIDF values of three PI categories. Conclusions : The selection of acupoints in NaeGyeong chapter of DongUiBoGam were linked to causes of diseases & symptoms based on the three PI categories. Through visualization of bipartite relationships between acupoints and causes of diseases & symptoms, we could easily understand characteristics of each acupoint.

Comparison of Product and Customer Feature Selection Methods for Content-based Recommendation in Internet Storefronts (인터넷 상점에서의 내용기반 추천을 위한 상품 및 고객의 자질 추출 성능 비교)

  • Ahn Hyung-Jun;Kim Jong-Woo
    • The KIPS Transactions:PartD
    • /
    • v.13D no.2 s.105
    • /
    • pp.279-286
    • /
    • 2006
  • One of the widely used methods for product recommendation in Internet storefronts is matching product features against target customer profiles. When using this method, it's very important to choose a suitable subset of features for recommendation efficiency and performance, which, however, has not been rigorously researched so far. In this paper, we utilize a dataset collected from a virtual shopping experiment in a Korean Internet book shopping mall to compare several popular methods from other disciplines for selecting features for product recommendation: the vector-space model, TFIDF(Term Frequency-Inverse Document Frequency), the mutual information method, and the singular value decomposition(SVD). The application of SVD showed the best performance in the analysis results.

Similarity Calculation for Mobile Life Log Data Mining (모바일 라이프로그 데이터 마이닝을 위한 Non-Euclidean 데이터의 유사도 계산)

  • Lee, Young-Seol;Cho, Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.298-301
    • /
    • 2011
  • 모바일 기기에서 수집된 많은 정보들은 시맨틱한 정보들을 포함하고 있기 때문에 수치 해석에 특화된 클러스터링 등의 데이터마이닝 방법들을 적용하기가 힘들다. 따라서 상대적인 유사도를 계산하는 방법이 많이 이용되지만, 상대적인 유사도 값조차 유클리드 거리로 환산이 불가능한 특징을 가지는 경우가 많다. 본 논문에서는 비유클리드 특징을 가지는 유사도를 TFIDF 와 pseudo-Euclidean embedding을 적용하여 유클리드 공간 상의 거리값으로 변환하는 방법을 제안한다. 제안하는 방법의 가능성을 보이기 위하여 모바일 기기에서 대학생들의 생활 패턴을 반영하는 데이터를 수집하고, 수집된 데이터에 제안하는 방법을 적용한다. 그리고 적용된 결과를 대학생들의 생활 패턴과 비교하여 분석한다. 또한 장소 간의 유사도를 이용하는 애플리케이션의 프로토타입을 개발한다.

Empirical Analysis & Comparisons of Web Document Classification Methods (문서분류 기법을 이용한 웹 문서 분류의 실험적 비교)

  • Lee, Sang-Soon;Choi, Jung-Min;Jang, Geun;Lee, Byung-Soo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.154-156
    • /
    • 2002
  • 인터넷의 발전으로 우리는 많은 정보와 지식을 인터넷에서 제공받을 수 있으며 HTML, 뉴스그룹 문서, 전자메일 등의 웹 문서로 존재한다. 이러한 웹 문서들은 여러가지 목적으로 분류해야 할 필요가 있으며 이를 적용한 시스템으로는 Personal WebWatcher, InfoFinder, Webby, NewT 등이 있다. 웹 문서 분류 시스템에서는 문서분류 기법을 사용하여 웹 문서의 소속 클래스를 결정하는데 문서분류를 위한 기법 중 대표적인 알고리즘으로 나이브 베이지안(Naive Baysian), k-NN(k-Nearest Neighbor), TFIDF(Term Frequency Inverse Document Frequency)방법을 이용한다. 본 논문에서는 웹 문서를 대상으로 이러한 문서분류 알고리즘 각각의 성능을 비교 및 평가하고자 한다.

  • PDF

A Implementation of Keyword Extraction Algorithm Using Anchor Text for Web's Conceptual Knowledge (웹의 개념지식을 위한 Anchor Text에서의 키워드 추출 알고리즘의 구현)

  • 조남덕;배환국;김기태
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.72-74
    • /
    • 2000
  • 인터넷을 효과적으로 검색하기 위하여 검색엔진을 많이 이용하고 있다. 그런데 문서의 키워드를 추출할 적에 지금까지는 Anchor Text를 염두에 두지 않았었다. Anchor Text는 사람이 직접 요약한 것이고(요약성), 하이퍼링크를 포함하는 웹 문서에 반드시 존재하므로(보편성) 그 하이퍼링크가 가리키는 곳의 문서의 키워드를 추출에 적합한 용도가 될 수 있다. 웹 그래프는 이러한 Anchor Text를 이용하여 키워드를 추출함으로써 문서와 문서간, 단어와 단어간의 관계(연관성)까지도 나타내 줄 수 있게 한 검색 엔진 시스템이다. 그러나 Anchor Text 자체가 본문의 내용이 아니고, Anchor Text를 작성한 사람에 따라 다르게 작성되며, 본문의 내용과 무관한 내용도 작성할 수 있다. 따라서 Anchor Text 자체를 어떠한 여과 없이 문서의 키워드로 받아들이긴 힘들다. 본 논문에서는 TFIDF를 통해 좀 더 정확성이 있는 키워드를 추출하였다.

  • PDF

Feature Selection for a Hangul Text Document Classification System (한글 텍스트 문서 분류시스템을 위한 속성선택)

  • Lee, Jae-Sik;Cho, You-Jung
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2003.05a
    • /
    • pp.435-442
    • /
    • 2003
  • 정보 추출(Information Retrieval) 시스템은 거대한 양의 정보들 가운데 필요한 정보의 적절한 탐색을 도와주기 위한 도구이다. 이는 사용자가 요구하는 정보를 보다 정확하고 보다 효과적이면서 보다 효율적으로 전달해주어야만 한다. 그러기 위해서는 문서내의 무수히 많은 속성들 가운데 해당 문서의 특성을 잘 반영하는 속성만을 선별해서 적절히 활용하는 것이 절실히 요구된다. 이에 본 연구는 기존의 한글 문서 분류시스템(CB_TFIDF)[1]의 정확도와 신속성 두 가지 측면의 성능향상에 초점을 두고 있다. 기존의 영문 텍스트 문서 분류시스템에 적용되었던 다양한 속성선택 기법들 가운데 잘 알려진 세가지 즉, Information Gain, Odds Ratio, Document Frequency Thresholding을 통해 선별적인 사례베이스를 구성한 다음에 한글 텍스트 문서 분류시스템에 적용시켜서 성능을 비교 평가한 후, 한글 문서 분류시스템에 가장 적절한 속성선택 기법과 속성 선택에 대한 가이드라인을 제시하고자 한다.

  • PDF