• Title/Summary/Keyword: TFEB

Search Result 7, Processing Time 0.021 seconds

Digital subtraction angiography vs. real-time fluoroscopy for detection of intravascular injection during transforaminal epidural block

  • Park, Kibeom;Kim, Saeyoung
    • Journal of Yeungnam Medical Science
    • /
    • v.36 no.2
    • /
    • pp.109-114
    • /
    • 2019
  • Background: Transforaminal epidural block (TFEB) is an effective treatment option for radicular pain. To reduce complications from intravascular injection during TFEB, use of imaging modalities such as real-time fluoroscopy (RTF) or digital subtraction angiography (DSA) has been recommended. In this study, we investigated whether DSA improved the detection of intravascular injection during TFEB at the whole spine level compared to RTF. Methods: We prospectively examined 316 patients who underwent TFEB. After confirmation of final needle position using biplanar fluoroscopy, 2 mL of nonionic contrast medium was injected at a rate of 0.5 mL/s under RTF; 30 s later, 2 mL of nonionic contrast medium was injected at a rate of 0.5 mL/s under DSA. Results: Thirty-six intravascular injections were detected for an overall rate of 11.4% using RTF, with 45 detected for a rate of 14.2% using DSA. The detection rate using DSA was statistically different from that using RTF (p=0.004). DSA detected a significantly higher proportion of intravascular injections at the cervical level than at the thoracic (p=0.009) and lumbar (p=0.011) levels. Conclusion: During TFEB at the whole spine level, DSA was better than RTF for the detection of intravascular injection. Special attention is advised for cervical TFEB, because of a significantly higher intravascular injection rate at this level than at other levels.

Can Hinokitiol Kill Cancer Cells? Alternative Therapeutic Anticancer Agent via Autophagy and Apoptosis (Hinokitiol에 의해 유도된 Autophagy 및 Apoptosis에 의한 대체 항암요법 연구)

  • Lee, Tae Bok;Jun, Jin Hyun
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.2
    • /
    • pp.221-234
    • /
    • 2019
  • Cancer is genetically, metabolically and infectiously induced life threatening disorder showing aggressive growing pattern with invasive tendency. In order to prevent this global menace from jeopardizing human life, enormous studies on carcinogenesis and treatment for chemotherapy resistance have been intensively researched. Hinokitiol (${\beta}$-thujaplicin) extracted from heart wood of cupressaceous is a well-known bioactive compound demonstrating anti-inflammation, anti-bacteria and anti-cancer effects on several cancer types via apoptosis and autophagy. This study proposed that hinokitiol activates transcription factor EB (TFEB) nuclear translocation for autophagy and lysosomal biogenesis regardless of nutrient condition in cancer cells. Mitophagy and ${\beta}$-catenin translocation into the nucleus under treatment of hinokitiol on non-small cell lung cancer (NSCLC) cells and HeLa cells were investigated. Hinokitiol exerted cytotoxicity on HeLa and HCC827 cells; moreover, artificially induced autophagy by overexpression of TFEB granted imperfect sustainability onto HeLa cells. Taken together, hinokitiol is the prominent autophagy inducer and activator of TFEB nuclear translocation. Alternative cancer therapy via autophagy is pros and cons since the autophagy in cancer cells is related to prevention and survival mechanism depending on nutrition. To avoid paradox of autophagy in cancer therapy, fine-tuned regulation and application of hinokitiol in due course for successful suppressing cancer cells are recommended.

Transcription Factor EB-Mediated Lysosomal Function Regulation for Determining Stem Cell Fate under Metabolic Stress

  • Chang Woo Chae;Young Hyun Jung;Ho Jae Han
    • Molecules and Cells
    • /
    • v.46 no.12
    • /
    • pp.727-735
    • /
    • 2023
  • Stem cells require high amounts of energy to replicate their genome and organelles and differentiate into numerous cell types. Therefore, metabolic stress has a major impact on stem cell fate determination, including self-renewal, quiescence, and differentiation. Lysosomes are catabolic organelles that influence stem cell function and fate by regulating the degradation of intracellular components and maintaining cellular homeostasis in response to metabolic stress. Lysosomal functions altered by metabolic stress are tightly regulated by the transcription factor EB (TFEB) and TFE3, critical regulators of lysosomal gene expression. Therefore, understanding the regulatory mechanism of TFEB-mediated lysosomal function may provide some insight into stem cell fate determination under metabolic stress. In this review, we summarize the molecular mechanism of TFEB/TFE3 in modulating stem cell lysosomal function and then elucidate the role of TFEB/TFE3-mediated transcriptional activity in the determination of stem cell fate under metabolic stress.

MiT Family Transcriptional Factors in Immune Cell Functions

  • Kim, Seongryong;Song, Hyun-Sup;Yu, Jihyun;Kim, You-Me
    • Molecules and Cells
    • /
    • v.44 no.5
    • /
    • pp.342-355
    • /
    • 2021
  • The microphthalmia-associated transcription factor family (MiT family) proteins are evolutionarily conserved transcription factors that perform many essential biological functions. In mammals, the MiT family consists of MITF (microphthalmia-associated transcription factor or melanocyte-inducing transcription factor), TFEB (transcription factor EB), TFE3 (transcription factor E3), and TFEC (transcription factor EC). These transcriptional factors belong to the basic helix-loop-helix-leucine zipper (bHLH-LZ) transcription factor family and bind the E-box DNA motifs in the promoter regions of target genes to enhance transcription. The best studied functions of MiT proteins include lysosome biogenesis and autophagy induction. In addition, they modulate cellular metabolism, mitochondria dynamics, and various stress responses. The control of nuclear localization via phosphorylation and dephosphorylation serves as the primary regulatory mechanism for MiT family proteins, and several kinases and phosphatases have been identified to directly determine the transcriptional activities of MiT proteins. In different immune cell types, each MiT family member is shown to play distinct or redundant roles and we expect that there is far more to learn about their functions and regulatory mechanisms in host defense and inflammatory responses.

Autophagy and Longevity

  • Nakamura, Shuhei;Yoshimori, Tamotsu
    • Molecules and Cells
    • /
    • v.41 no.1
    • /
    • pp.65-72
    • /
    • 2018
  • Autophagy is an evolutionally conserved cytoplasmic degradation system in which varieties of materials are sequestered by a double membrane structure, autophagosome, and delivered to the lysosomes for the degradation. Due to the wide varieties of targets, autophagic activity is essential for cellular homeostasis. Recent genetic evidence indicates that autophagy has a crucial role in the regulation of animal lifespan. Basal level of autophagic activity is elevated in many longevity paradigms and the activity is required for lifespan extension. In most cases, genes involved in autophagy and lysosomal function are induced by several transcription factors including HLH-30/TFEB, PHA-4/FOXA and MML-1/Mondo in long-lived animals. Pharmacological treatments have been shown to extend lifespan through activation of autophagy, indicating autophagy could be a potential and promising target to modulate animal lifespan. Here we summarize recent progress regarding the role of autophagy in lifespan regulation.

Differential Sensitivity of Wild-Type and BRAF-Mutated Cells to Combined BRAF and Autophagy Inhibition

  • Yeom, Hojin;Hwang, Sung-Hee;Han, Byeal-I;Lee, Michael
    • Biomolecules & Therapeutics
    • /
    • v.29 no.4
    • /
    • pp.434-444
    • /
    • 2021
  • BRAF inhibitors are insufficient monotherapies for BRAF-mutated cancer; therefore, we investigated which inhibitory pathway would yield the most effective therapeutic approach when targeted in combination with BRAF inhibition. The oncogenic BRAF inhibitor, PLX4720, increased basal autophagic flux in BRAF-mutated cells compared to wild-type (WT) BRAF cells. Interestingly, early autophagy inhibition improved the effectiveness of PLX4720 regardless of BRAF mutation, whereas late autophagy inhibition did not. Although ATG5 knockout led to PLX4720 resistance in both WT and BRAF-mutated cells, the MEK inhibitor trametinib exhibited a synergistic effect on PLX4720 sensitivity in WT BRAF cells but not in BRAF-mutated cells. Conversely, the prolonged inhibition of endoplasmic reticulum (ER) stress reduced basal autophagy in BRAF-mutated cells, thereby increasing PLX4720 sensitivity. Taken together, our results suggest that the combined inhibition of ER stress and BRAF may simultaneously suppress both pro-survival ER stress and autophagy, and may therefore be suitable for treatment of BRAF-mutated tumors whose autophagy is increased by chronic ER stress. Similarly, for WT BRAF tumors, therapies targeting MEK signaling may be a more effective treatment strategy. Together, this study presents a rational combination treatment strategy to improve the efficacy of BRAF inhibitors depending on BRAF mutation status.

Vitamin D Attenuates Pain and Cartilage Destruction in OA Animals via Enhancing Autophagic Flux and Attenuating Inflammatory Cell Death

  • JooYeon Jhun;Jin Seok Woo;Ji Ye Kwon;Hyun Sik Na;Keun-Hyung Cho;Seon Ae Kim;Seok Jung Kim;Su-Jin Moon;Sung-Hwan Park;Mi-La Cho
    • IMMUNE NETWORK
    • /
    • v.22 no.4
    • /
    • pp.34.1-34.19
    • /
    • 2022
  • Osteoarthritis (OA) is the most common form of arthritis associated with ageing. Vitamin D has diverse biological effect on bone and cartilage, and observational studies have suggested it potential benefit in OA progression and inflammation process. However, the effect of vitamin D on OA is still contradictory. Here, we investigated the therapeutic potential of vitamin D in OA. Six-week-old male Wistar rats were injected with monosodium iodoacetate (MIA) to induce OA. Pain severity, cartilage destruction, and inflammation were measured in MIA-induced OA rats. Autophagy activity and mitochondrial function were also measured. Vitamin-D (1,25(OH)2D3) and celecoxib were used to treat MIA-induced OA rats and OA chondrocytes. Oral supplementation of vitamin D resulted in significant attenuations in OA pain, inflammation, and cartilage destruction. Interestingly, the expressions of MMP-13, IL-1β, and MCP-1 in synovial tissues were remarkably attenuated by vitamin D treatment, suggesting its potential to attenuate synovitis in OA. Vitamin D treatment in OA chondrocytes resulted in autophagy induction in human OA chondrocytes and increased expression of TFEB, but not LC3B, caspase-1 and -3, in inflamed synovium. Vitamin D and celecoxib showed a synergistic effect on antinociceptive and chondroprotective properties in vivo. Vitamin D showed the chondroprotective and antinociceptive property in OA rats. Autophagy induction by vitamin D treatment may be a promising treatment strategy in OA patients especially presenting vitamin D deficiency. Autophagy promoting strategy may attenuate OA progression through protecting cells from damage and inflammatory cell death.