• 제목/요약/키워드: TF32 Wavesufer

검색결과 1건 처리시간 0.013초

노인음성신호처리에서의 젠더 분석 (Gender Analysis in Elderly Speech Signal Processing)

  • 이지연
    • 디지털융복합연구
    • /
    • 제16권10호
    • /
    • pp.351-356
    • /
    • 2018
  • 화로 인한 성대의 변화는 음성의 주파수를 변화시킬 수 있으며, 그 노인음성 신호는 다양한 분석을 통해 정상음성 신호와 자동으로 구분할 수 있다. 본 연구의 목적은 기존 스마트 의료 시스템의 노령자 음성 인식 성능을 향상시키고, 음성을 이용한 편리한 인터페이스를 제공함으로써 빠르게 변화하고 있는 기술사회에서 제외될 수 있는 노인과 장애인들에게 쉽게 접근 할 수 있는 도구를 제공하는 것이다. 본 연구에서는 성 분석으로서, 연구 대상의 성별을 보고했고, 여성과 남성 음성 샘플 개수를 동일하게 사용하였다. 또한 젠더 분석을 적용하여 모든 연령의 목소리를 사용하지 않고 노령자의 목소리를 목표로 설정하여 실험을 수행하였다. 마지막으로, 우리는 성별 및 젠더 편견을 줄이기 위한 표준 및 참조 모델의 재검토 방법을 적용하였다. 본 연구에서는 70세에서 80세까지의 한국인 여성 10명과 남성 10명의 노령자 음성을 사용했다. 파형을 보고 직접 추출한 F0 값과 TF32와 Wavesufer 음성 분석 프로그램에서 추출된 F0를 비교했을 때, TF32보다 Wavesufer가 노인음성의 F0를 더 잘 분석하는 것을 알 수 있었다. 그러나 노령자 대상 노인음성용 음성분석프로그램이 필요하며, 노령자의 음성을 분석함으로써 기존 스마트 의료 시스템의 음성 인식 및 합성 성능을 향상시킬 수 있을 것으로 기대한다.