• Title/Summary/Keyword: TEXT-MINING

Search Result 1,545, Processing Time 0.03 seconds

Analysis of Dog-Related Outdoor Public Space Conflicts Using Complaint Data (민원 자료를 활용한 반려견 관련 옥외 공공공간 갈등 분석)

  • Yoo, Ye-seul;Son, Yong-Hoon;Zoh, Kyung-Jin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.52 no.1
    • /
    • pp.34-45
    • /
    • 2024
  • Companion animals are increasingly being recognized as members of society in outdoor public spaces. However, the presence of dogs in cities has become a subject of conflict between pet owners and non-pet owners, causing problems in terms of hygiene and noise. This study was conducted to analyze public complaint data using the keywords 'dog,' 'pet,' and 'puppy' through text mining techniques to identify the causes of conflicts in outdoor public spaces related to dogs and to identify key issues. The main findings of the study are as follows. First, the majority of dog-related complaints were related to the use of outdoor public spaces. Second, different types of outdoor public spaces have different spatial issues. Third, there were a total of four topics of dog-related complaints: 'Requesting a dog playground', 'Raising safety issues related to animals', 'Using facilities other than dog-only areas', and 'Requesting increased park management and enforcement related to pet tickets'. This study analyzed the perceptions of citizens surrounding pets at a time when the creation and use of public spaces related to pets are expanding. In particular, it is significant in that it applied a new method of collecting public opinions by adopting complaint data that clearly presents problems and requests.

A School-tailored High School Integrated Science Q&A Chatbot with Sentence-BERT: Development and One-Year Usage Analysis (인공지능 문장 분류 모델 Sentence-BERT 기반 학교 맞춤형 고등학교 통합과학 질문-답변 챗봇 -개발 및 1년간 사용 분석-)

  • Gyeongmo Min;Junehee Yoo
    • Journal of The Korean Association For Science Education
    • /
    • v.44 no.3
    • /
    • pp.231-248
    • /
    • 2024
  • This study developed a chatbot for first-year high school students, employing open-source software and the Korean Sentence-BERT model for AI-powered document classification. The chatbot utilizes the Sentence-BERT model to find the six most similar Q&A pairs to a student's query and presents them in a carousel format. The initial dataset, built from online resources, was refined and expanded based on student feedback and usability throughout over the operational period. By the end of the 2023 academic year, the chatbot integrated a total of 30,819 datasets and recorded 3,457 student interactions. Analysis revealed students' inclination to use the chatbot when prompted by teachers during classes and primarily during self-study sessions after school, with an average of 2.1 to 2.2 inquiries per session, mostly via mobile phones. Text mining identified student input terms encompassing not only science-related queries but also aspects of school life such as assessment scope. Topic modeling using BERTopic, based on Sentence-BERT, categorized 88% of student questions into 35 topics, shedding light on common student interests. A year-end survey confirmed the efficacy of the carousel format and the chatbot's role in addressing curiosities beyond integrated science learning objectives. This study underscores the importance of developing chatbots tailored for student use in public education and highlights their educational potential through long-term usage analysis.

LDA Topic Modeling and Recommendation of Similar Patent Document Using Word2vec (LDA 토픽 모델링과 Word2vec을 활용한 유사 특허문서 추천연구)

  • Apgil Lee;Keunho Choi;Gunwoo Kim
    • Information Systems Review
    • /
    • v.22 no.1
    • /
    • pp.17-31
    • /
    • 2020
  • With the start of the fourth industrial revolution era, technologies of various fields are merged and new types of technologies and products are being developed. In addition, the importance of the registration of intellectual property rights and patent registration to gain market dominance of them is increasing in oversea as well as in domestic. Accordingly, the number of patents to be processed per examiner is increasing every year, so time and cost for prior art research are increasing. Therefore, a number of researches have been carried out to reduce examination time and cost for patent-pending technology. This paper proposes a method to calculate the degree of similarity among patent documents of the same priority claim when a plurality of patent rights priority claims are filed and to provide them to the examiner and the patent applicant. To this end, we preprocessed the data of the existing irregular patent documents, used Word2vec to obtain similarity between patent documents, and then proposed recommendation model that recommends a similar patent document in descending order of score. This makes it possible to promptly refer to the examination history of patent documents judged to be similar at the time of examination by the examiner, thereby reducing the burden of work and enabling efficient search in the applicant's prior art research. We expect it will contribute greatly.

A Gap Analysis Using Spatial Data and Social Media Big Data Analysis Results of Island Tourism Resources for Sustainable Resource Management (지속가능한 자원관리를 위한 섬 지역 관광자원의 공간정보와 소셜미디어 빅데이터 분석 결과를 활용한 격차분석)

  • Lee, Sung-Hee;Lee, Ju-Kyung;Son, Yong-Hoon;Kim, Young-Jin
    • Journal of Korean Society of Rural Planning
    • /
    • v.30 no.2
    • /
    • pp.13-24
    • /
    • 2024
  • This study conducts an analysis of social media big data pertaining to island tourism resources, aiming to discern the diverse forms and categories of island tourism favored by consumers, ascertain predominant resources, and facilitate objective decision-making grounded in scientific methodologies. To achieve this objective, an examination of blog posts published on Naver from 2022 to 2023 was undertaken, utilizing keywords such as 'Island tourism', 'Island travel', and 'Island backpacking' as focal points for analysis. Text mining techniques were applied to sift through the data. Among the resources identified, the port emerged as a significant asset, serving as a pivotal conduit linking the island and mainland and holding substantial importance as a focal point and resource for tourist access to the island. Furthermore, an analysis of the disparity between existing island tourism resources and those acknowledged by tourists who actively engage with and appreciate island destinations led to the identification of 186 newly emerging resources. These nascent resources predominantly clustered within five regions: Incheon Metropolitan City, Tongyeong/Geoje City, Jeju Island, Ulleung-gun, and Shinan-gun. A scrutiny of these resources, categorized according to the tourism resource classification system, revealed a notable presence of new resources, chiefly in the domains of 'rural landscape', 'tourist resort/training facility', 'transportation facility', and 'natural resource'. Notably, many of these emerging resources were previously overlooked in official management targets or resource inventories pertaining to existing island tourism resources. Noteworthy examples include ports, beaches, and mountains, which, despite constituting a substantial proportion of the newly identified tourist resources, were not accorded prominence in spatial information datasets. This study holds significance in its ability to unearth novel tourism resources recognized by island tourism consumers through a gap analysis approach that juxtaposes the existing status of island tourism resource data with techniques utilizing social media big data. Furthermore, the methodology delineated in this research offers a valuable framework for domestic local governments to gauge local tourism demand and embark on initiatives for tourism development or regional revitalization.

A Study on the Perception of Pit and Fissure Sealant using Unstructured Big Data (비정형 빅데이터를 이용한 치면열구전색(치아홈메우기)에 대한 인식분석)

  • Han-A Cho
    • Journal of Korean Dental Hygiene Science
    • /
    • v.6 no.2
    • /
    • pp.101-114
    • /
    • 2023
  • Background: This study aimed to explore the overall perception of pit and fissure sealants and suggest methods to revitalize their current stagnation. Methods: To determine the social perception of the change in coverage policy for pit and fissure sealants, we categorized them into five time periods. The first period (December 1, 2009 to November 30, 2010), the second period (December 1, 2010 to September 30, 2012), the third period (October 1, 2012 to May 5, 2013), the fourth period (May 6, 2013 to September 30, 2017), and the fifth period (October 1, 2017 to December 31, 2022). We utilized text mining, an unstructured big data analysis method. Keywords were collected and analyzed using Textom, and the frequency analysis of the top 30 keywords, structural features of the semantic network, centrality analysis, QAP correlation analysis, and co-occurrence analysis were conducted. Results: The frequency analysis showed that the top keywords for each time period were 'Cavities', 'Treatment', and 'Children'. In the structural features of the semantic network of pit and fissure sealants by time period, the density index was found to be around 1.00 for all time periods. The QAP correlation analysis showed the highest correlation between the first and second periods and the fourth and fifth periods with a correlation coefficient of 0.834. The co-occurrence analysis showed that 'cavities' and 'prevention were the top two words across all time periods. Conclusion: This study showed that pit and fissure sealants are well accepted by the society as a preventive treatment for caries. However, the awareness of health education related to these sealants was found to be low. Efforts to revitalize stagnant pit and fissure sealants need to be strengthened with effective education.

A Study on Trends of Key Issues in Port Safety at Busan Port (부산항 항만안전 주요 이슈 동향에 관한 연구)

  • Jeong-Min Lee;Do-Yeon Ha;Joo-Hye Kim
    • Journal of Navigation and Port Research
    • /
    • v.48 no.1
    • /
    • pp.34-48
    • /
    • 2024
  • As global supply chain risks proliferate unpredictably, the high interdependence of port and logistics industry intensifies the risk burden. This study conducted fundamental research to explore diverse safety issues in domestic ports. Utilizing news article data about Busan Port, we employed LDA topic modeling and time-series linear regression to understand key safety trends. Over the past 30 years, Busan Port faced nine major safety issues-maritime safety, import cargo inspection, labor strikes, and natural disasters emerged cyclically. Major port safety issues in Busan Port are primarily characterized by an unpredictable nature, falling under socio-environmental and natural phenomena types, indicating a significant impact of global uncertainty. Therefore, systematic policies need to be formulated based on identified port safety issues to enhance port safety in Busan Port. Additionally, there is a need to strengthen the resilience of port safety for unpredictable risk situations. In conclusion, advanced research activities are necessary to promote port safety enhancement in response to dynamically changing social conditions.

Online Privacy Protection: An Analysis of Social Media Reactions to Data Breaches (온라인 정보 보호: 소셜 미디어 내 정보 유출 반응 분석)

  • Seungwoo Seo;Youngjoon Go;Hong Joo Lee
    • Knowledge Management Research
    • /
    • v.25 no.1
    • /
    • pp.1-19
    • /
    • 2024
  • This study analyzed the changes in social media reactions of data subjects to major personal data breach incidents in South Korea from January 2014 to October 2022. We collected a total of 1,317 posts written on Naver Blogs within a week immediately following each incident. Applying the LDA topic modeling technique to these posts, five main topics were identified: personal data breaches, hacking, information technology, etc. Analyzing the temporal changes in topic distribution, we found that immediately after a data breach incident, the proportion of topics directly mentioning the incident was the highest. However, as time passed, the proportion of mentions related indirectly to the personal data breach increased. This suggests that the attention of data subjects shifts from the specific incident to related topics over time, and interest in personal data protection also decreases. The findings of this study imply a future need for research on the changes in privacy awareness of data subjects following personal data breach incidents.

What Concerns Does ChatGPT Raise for Us?: An Analysis Centered on CTM (Correlated Topic Modeling) of YouTube Video News Comments (ChatGPT는 우리에게 어떤 우려를 초래하는가?: 유튜브 영상 뉴스 댓글의 CTM(Correlated Topic Modeling) 분석을 중심으로)

  • Song, Minho;Lee, Soobum
    • Informatization Policy
    • /
    • v.31 no.1
    • /
    • pp.3-31
    • /
    • 2024
  • This study aimed to examine public concerns in South Korea considering the country's unique context, triggered by the advent of generative artificial intelligence such as ChatGPT. To achieve this, comments from 102 YouTube video news related to ethical issues were collected using a Python scraper, and morphological analysis and preprocessing were carried out using Textom on 15,735 comments. These comments were then analyzed using a Correlated Topic Model (CTM). The analysis identified six primary topics within the comments: "Legal and Ethical Considerations"; "Intellectual Property and Technology"; "Technological Advancement and the Future of Humanity"; "Potential of AI in Information Processing"; "Emotional Intelligence and Ethical Regulations in AI"; and "Human Imitation."Structuring these topics based on a correlation coefficient value of over 10% revealed 3 main categories: "Legal and Ethical Considerations"; "Issues Related to Data Generation by ChatGPT (Intellectual Property and Technology, Potential of AI in Information Processing, and Human Imitation)"; and "Fear for the Future of Humanity (Technological Advancement and the Future of Humanity, Emotional Intelligence, and Ethical Regulations in AI)."The study confirmed the coexistence of various concerns along with the growing interest in generative AI like ChatGPT, including worries specific to the historical and social context of South Korea. These findings suggest the need for national-level efforts to ensure data fairness.

A Study on the Characteristics of Real Estate Investment Sentiment by Real Estate Business Cycle Using Text Mining (텍스트 마이닝을 이용한 부동산경기 순환기별 부동산 투자심리 특성 연구)

  • Hyun-Jeong Lee;Yun Kyung Oh
    • Land and Housing Review
    • /
    • v.15 no.3
    • /
    • pp.113-127
    • /
    • 2024
  • This study explores shifts in real estate investment sentiment using media reports from 2012 to 2022, segmenting the market dynamics into three distinct cycles based on housing and land transaction indices. Leveraging 54 BigKinds media sources, we investigates 3,387 headlines and 8,544 body texts using LDA topic modeling. The results show that the first cycle (2012-2015 ) centered on apartment pre-sales, where policy changes influenced sentiment but did not consistently affect investment decisions. The second cycle (2016-2018) was characterized by interest rate hikes and rising property prices in Seoul, resulting in significant fluctuations in transaction volumes. The third cycle (2019-2022) encompassed the effects of COVID-19, market instability, and policy failures, leading to distorted and weakened investment sentiment. Each cycle demonstrated that policies, interest rates, and economic events significantly shaped investor sentiment, as reflected in media reports.

A Study on Determining the Priority of Introducing Smart Ports in Korea (국내 스마트 항만 도입 우선순위 도출 연구)

  • Ryu, Won-Hyeong;Nam, Hyung-Sik
    • Journal of Korea Port Economic Association
    • /
    • v.40 no.1
    • /
    • pp.31-59
    • /
    • 2024
  • In June 2016, the term "Fourth Industrial Revolution" was first used at the World Economic Forum in Davos, Switzerland, and it gained worldwide attention. Consequently, the importance of smart ports has increased as the shipping industry has been incorporating various Fourth Industrial Revolution technologies. Currently, major countries around the world are working to achieve digital transformation in the maritime and port industry by establishing comprehensive smart ports. However, the smartification of domestic ports in South Korea is currently limited to a few areas such as Busan, Incheon, and Gwangyang, focusing on port automation. In this context, this study performed keyword analysis to identify key components of smart ports and conducted Analytic Hierarchy Process (AHP) analysis among relevant stakeholders to determine the priorities for the Introduction of smart ports in South Korea. The analysis revealed that universities prioritized automation, intelligenceization, informatization and environmentalization in that order. Research institutes prioritized informatization, intelligenceization, automation and environmentalization. Government agencies prioritized informatization, automation, intelligenceization and environmentalization, while private sector enterprises prioritized automation, intelligenceization, informatization, and environmentalization.