• Title/Summary/Keyword: TEX>${\varepsilon}$-Caprolactone

Search Result 142, Processing Time 0.02 seconds

Formation of Poly(ethylene glycol)-Poly($\varepsilon$-caprolactone) Nanoparticles via Nanoprecipitation

  • Lee, Jae-Sung;Hwang, Su-Jong;Lee, Doo-Sung;Kim, Sung-Chul;Kim, Duk-Joon
    • Macromolecular Research
    • /
    • v.17 no.2
    • /
    • pp.72-78
    • /
    • 2009
  • Size control of therapeutic carriers in drug delivery systems has become important due to its relevance to biodistribution in the human body and therapeutic efficacy. To understand the dependence of particle size on the formation condition during nanoprecipitation method, we prepared nanoparticles from biodegradable, amphiphilic block copolymers and investigated the particle size and structure of the resultant nanoparticles according to various process parameters. We synthesized monomethoxy poly(ethylene glycol)-poly($\varepsilon$-caprolactone) block copolymer, MPEG-PCL, with different MPEG/PCL ratios via ring opening polymerization initiated from the hydroxyl end group of MPEG. Using various formulations with systematic change of the block ratio of MPEG and PCL, solvent choice, and concentration of organic phase, MPEG-PCL nanoparticles were prepared through nanoprecipitation technique. The results indicated that (i) the nanoparticles have a dual structure with an MPEG shell and a PCL core, originating from self-assembly of MPEG-PCL copolymer in aqueous condition, and (ii) the size of nanoparticles is dependent upon two sequential processes: diffusion between the organic and aqueous phases and solidification of the polymer.

Preparation and Release Characterization of Biodegradable Poly($\varepsilon$-caprolactone) Microcapsules Containing Tocopherol (토코페롤을 함유하는 생분해성 폴리($\varepsilon$-카프로락톤) 마이크로캡슐의 제조 및 방출 특성)

  • 박수진;김기석;민병각;홍성권
    • Polymer(Korea)
    • /
    • v.28 no.2
    • /
    • pp.103-110
    • /
    • 2004
  • The biodegradable poly($\varepsilon$-caprolactone) (PCL) microcapsules containing tocopherol were prepared by oil-in-water emulsion solvent evaporation method. The features of the microcapsules were investigated in the manufacturing conditions and degradation behaviors. The form and structural feature of the microcapsules were measured by scanning electron microscope and X-ray diffraction, respectively. The surface free energy of the microcapsules was executed using contact angle measurement. As a result, the microcapsules were more stable and spherical with poly(vinyl alcohol) given in a surfactant. The surface free energy and crystallinity of microcapsules were decreased with increasing the core concentration, and degradation of PCL was occurred after 21 days. The release behaviors were examined by Uv/vis. spectrophotometer. It was found that the release rate of the microcapsules was increased with increasing the stirring rate, due to the increased interface between microcapsules and release media.

Preparation and Characteristics of Poly(ε-caprolactone) Microcapsules Containing Pseudomonas by W/O/W Emulsion (다중에멀젼법을 통한 슈도모나스를 함유하는 PCL 마이크로캡슐의 제조 및 특성 연구)

  • Kim, Ki-Seok;Lee, Seung-Yeop;Lee, Gun-Woong;Kim, Hyung-Gon;Park, Soo-Jin
    • Polymer(Korea)
    • /
    • v.36 no.2
    • /
    • pp.202-207
    • /
    • 2012
  • Biodegradable poly(${\varepsilon}$-caprolactone)(PCL) microcapsules containing pseudomonas were prepared by W/O/W emulsion system. The characteristics and release behaviors of the microcapsules were investigated as a function of manufacturing conditions. The morphology and particle distribution of the microcapsules were observed by a scanning electron microscope and a particle size analyzer. The release behaviors of the pseudomonas were determined using a cell culture method. It was found that smooth and spherical microcapsules were formed by W/O/W emulsion system and particle size was in the range of 10 to 60 ${\mu}m$. The release behaviors of the pseudomonas were influenced by the manufacturing conditions. It was indicated that the increase of the surfactant content and stirring rate led to an increased release rate, resulting from the high specific surface area of the smaller particle size, and the increase of the PCL content provided the sustained release behaviors by the delay effect of diffusion in the release medium.

Preparation and Characterizations of Poly(ethylene glycol)-Poly(ε-caprolactone) Block Copolymer Nanoparticles

  • Choi, Chang-Yong;Chae, Su-Young;Kim, Tai-Hyoung;Jang, Mi-Kyeong;Cho, Chong-Su;Nah, Jae-Woon
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.4
    • /
    • pp.523-528
    • /
    • 2005
  • Diblock copolymers with different poly($\varepsilon$-caprolactone) (PCL) block lengths were synthesized by ringopening polymerization of $\varepsilon$-caprolactone in the presence of monomethoxy poly(ethylene glycol) (mPEG-OH, MW 2000) as initiator. The self-aggregation behaviors of the diblock copolymer nanoparticle, prepared by the diafiltration method, were investigated by using $^1H$ NMR, dynamic light scattering (DLS), and fluorescence spectroscopy. The PEG-PCL block copolymers formed the nano-sized self-aggregate in an aqueous environment by intrsa- and/or intermolecular association between hydrophobic PCL chains. The critical aggregation concentrations (cac) of the block copolymer self-aggregate became lower with increasing hydrophobic PCL block length. On the other hand, reverse trends of mean hydrodynamic diameters were measured by DLS owing to the increasing bulkiness of the hydrophobic chains and hydrophobic interaction between the PCL microdomains. The hydrodynamic diameters of the block copolymer nanoparticles, measured by DLS, were in the range of 65-270 nm. Furthermore, the size of the nanoparticles was scarcely affected by the concentration of the block copolymers in the range of 0.125-5 mg/mL owing to the negligible interparticular aggregation between the self-aggregated nanoparticles. Considered with the fairly low cac and nanoparticle stability, the PEG-PCL nanoparticles can be considered a potential candidate for biomedical applications such as drug carrier or imaging agent.

Synthesis of Methoxy Poly(ethylene glycol)-b-poly($\varepsilon$-caprolactone) Diblock Copolymers and Release Behavior of Albumin for Implantable Protein Carriers (이식형 단백질 전달체로서 메톡시 폴리(에틸렌 글리콜)/폴리카프로락톤 블록 공중합체의 합성 및 알부민의 방출 거동)

  • 서광수;전세강;김문석;조선행;이해방;강길선
    • Polymer(Korea)
    • /
    • v.28 no.3
    • /
    • pp.232-238
    • /
    • 2004
  • MPEG-PCL diblock copolymers consisting of methoxy poly(ethylene glycol) (MPEG) and $\varepsilon$-caprolactone (CL) as drug carriers were synthesized by ring-opening polymerization MPEG-PCL diblock copolymers were characterized by X-ray diffraction and differential scanning calorimetry. After freeze milling of block copolymers and albumin bovine-fluorescein isothiocyanate (FITC-BSA) as model protein, the wafers loaded FITC-BSA were fabricated by direct compression method. The release profiles of FITC-BSA were examined using pH 7.4 PBS for 14 days at 37$^{\circ}C$. The release amount was determined by fluorescence intensity by using the fluorescence spectrophotometer. The morphological change of wafers was observed by digital camera and scanning electron microscope. The release rate and initial burst of BSA increased with increasing PEG molecular weights and decreasing PCL molecular weights in the segments of MPEG -PCL diblock copolymers.

Synthesis of Polyethylene-block-Poly(${\varepsilon}-caprolactone$) and Polyethylene-block-Poly(methyl methacrylate) from Hydroxy-terminated Polyethylenes

  • Jeon, Man-Seong;Kim, Sang-Youl
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.226-226
    • /
    • 2006
  • Ethylene was polymerized with a catalyst having sterically hindered pentamethylcyclopentadienyl ligand, $Cp^{\ast}_{2}ZrCl_{2}/MAO$, and the polymerization mixture were treated with dry oxygen (oxidative workup) to produce hydroxyl-terminated polyethylenes (PE-OH). Polyethylene-block-Poly (${\Box}-caprolactone$) was synthesized from PE-OH and ${\cdot}\^{A}-caprolactone$A by using stannous octoate as a catalyst for ring opening polymerization of ${\cdot}\^{A}-caprolactone$. Polyethylene-block-Poly(methyl methacrylate) was obtained by transforming the hydroxyl-terminated polyethylenes to macroinitiators for atom transfer radical polymerization (ATRP) and by reacting them with MMA.

  • PDF

Efficient Bimodal Ring-opening Polymerization of ε-Caprolactone Catalyzed by Titanium Complexes with N-Alkoxy-β-ketoiminate Ligands

  • Cho, Min-Ho;Yoon, Jin-San;Lee, Ik-Mo
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2471-2476
    • /
    • 2007
  • A series of titanium complexes containing terdentate β-ketoiminate ligands were found to be efficient for the ring-opening polymerization of ε-caprolactone (ε-CL), producing poly(ε-caprolactone) (PCL) with bimodal distribution. Steric factors imposed by methyl substituents on the back bone of the alkoxy group affected significantly the polymerization rate and physical properties of the resulting PCL. Intra- and intermolecular transesterifications rather than disproportional rearrangements were responsible for the bimodal behavior and for the change in the molecular weight (Mw). Dilution with toluene reduced yield, and lowered polydispersity (PDI) and Mw of PCL, while the catalytic activities of the dimeric complex, [Ti(Oi-Pr)2(N-alkoxy-β- ketoiminate)]2 and Ti(Oi-Pr)4 were not sensitive to the added solvent. The dimeric complex showed living character, while other catalysts suffered from chain termination reactions.

Metal Nanoparticles in the Template of Poly(2-ethyl-2-oxazoline)-block-Poly(${\varepsilon}$-caprolactone) Micelle

  • Park, Chi-Young;Rhue, Mi-Kyo;Lim, Jin-O;Kim, Chul-Hee
    • Macromolecular Research
    • /
    • v.15 no.1
    • /
    • pp.39-43
    • /
    • 2007
  • The amphiphilic block copolymer (PEtOz-PCL) of poly(2-ethyl-2-oxazoline) (PEtOz) and poly(${\varepsilon}$-caprolactone) (PCL) formed spherical micellar structures with an average diameter of 26 nm in aqueous phase. Au and Pd nanoparticles with an average diameter of $2{\sim}3nm$ were prepared by using the PEtOz-PCL micelle consisting of a PEtOz shell and PCL core. The Au nanoparticles of PEtOz-PCL micelles in aqueous phase could be transferred into organic phase by using n-dodecanethiol. The use of the Pd-NP/PEtOz-PCL micelle as a nanoreactor for Suzuki cross-coupling reaction was investigated.