• 제목/요약/키워드: TEST Frame

검색결과 1,548건 처리시간 0.032초

W-CDMA 시스템의 파일럿 패턴을 이용한 프레임 동기 성능 분석 (Performance Evaluation of Frame Synchronization Using Pilot Patterns in W-CDMA System)

  • 송영준;김한묵
    • 한국전자파학회논문지
    • /
    • 제17권3호
    • /
    • pp.272-279
    • /
    • 2006
  • 본 논문에서는 W-CDMA(Wide band Code Division Multiple Access) 시스템에서 채널 측정 및 프레임 동기 확인에 사용되는 파일럿 비트 패턴의 프레임 동기 단어(frame synchronization words) 성능을 분석한다. 또한 W-CDMA 시스템에서는 두 개의 수신 단말기를 갖지 않고도, 다른 주파수의 측정을 하기 위해 압축 모드(compressed mode)를 사용한다. 제안된 프레임 동기용 이원 부호의 우선 쌍 간의 보완 매핑(complementary mapping) 관계를 이용하면, 압축 모드에서도 프레임 동기 특성을 유지함을 컴퓨터 시뮬레이션을 통하여 확인한다. 검출 확률과 오 경보 확률을 갖는 수신기 동작 특성(ROC: Reciever Operating Characteristic) 곡선은 LLRT(Log Likely-hood Ratio Test), GLRT(Generalied Likeiyhood Ratio Test), 연판정(soft correlation test), 경 판정(hard correlarion test)과 같은 다양한 검출법(detection metrics)을 이용하여 레일레이 페이딩 채널에서 제안된 프레임 동기 단어의 성능 분석에 사용된다. 이 논문의 파일럿 비트 패턴의 성능에 대한 연구 결과는 3세대 W-CDMA 시스템에서 프레임 동기의 설계 및 구현에 유용한 참고 자료가 될 수 있을 것이다.

철근콘크리트 프레임면내 조적벽체의 내진성능개선 기술 개발 (Development of Technique for Improvement of Earthquake-Resistant Performance of Reinforced Concrete Infilled Masonry Frame)

  • 신종학;하기주;최민권;권중배;남왕교
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.1143-1148
    • /
    • 2001
  • Experimental programs were accomplished to improve and evaluate the structural performance of test specimens, such as hysteretic behavior, maximum horizontal strength, crack propagation, and ductility etc. Test variables are restraining factors of frame, with or without masonry infilled wall, and masonry method. Six reinforced concrete rigid frame and masonry infiiled wall were constructed and tested in one-third scale size under vertical and cyclic loads simultaneously. Based on the test results, the following conclusions can be made. For masonry infilled walls with restraining factors of frame, maximum horizontal capacities were increased by 1.26~2.24 times in comparision with that of rigid frame. For masonry infilled wall with restraining factors of frame(IFWB-1), cumulated energy dissipation capacities wear increased by 1.60 times in comparision with that of masonry infilled wall(IFB-1) at final stage of testing.

  • PDF

상용 버스용 알루미늄 시트 프레임의 개발에 관한 연구 (A Study on the Development of Aluminum Seat Frame for Commercial Bus)

  • 우호광;이상복;김상범;김헌영
    • 한국자동차공학회논문집
    • /
    • 제12권3호
    • /
    • pp.91-100
    • /
    • 2004
  • This study presents the development of a new aluminum seat frame for the commercial bus. Back moment and seat belt anchorage analysis of the conventional steel seat frame was conducted as a base model. Effective aluminum section dimensions for aluminum pipe were calculated from equivalent stiffness and equivalent weight study. Back moment and seat belt anchorage strength with the developed aluminum seat frame were compared to those of the base model. Additionally, to pass the fatigue test, shape modification of side frame assembly was conducted. From this study we could reduce the weight of seat frame more than 5 kg. And the current analysis model and procedure can provide useful informations in designing a new commercial car seat and can reduce the overall design cost and time.

전동차 구동대차의 구조해석 및 하중시험 비교 고찰 (A Comparision on Structure Analysis and Load Test of Driving Bogie for Electrical Multiple Unit)

  • 김원경;윤성철;권성태;박옥정
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.404-409
    • /
    • 2005
  • This paper describes the result of structure analysis and load test for bogie frame. The purpose of the analysis and test is to evaluate an safety which body structure shall be considered fully sufficient rigidity so as to satisfy proper system function under maximum load. Bogie system consists of bogie frame, suspensions, wheel-sets, braking system and transmission system. Among these component, the bogie frame is most significant component subjected to the vehicle and passenger loads. The evaluation method is used the JIS E 4207 specification throughout the FEM analysis and static load test. The analysis and test results have been very safety and stable for design load conditions.

  • PDF

구조해석 및 시험에 의한 경량화 차체 구조강도 평가 (Structural Strength Evaluation of a Carbody by Finite Element Analysis and Tests)

  • 윤성철;김원경;전창성;김명룡
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.49-54
    • /
    • 2005
  • This paper describes the result of structure analysis and load test of body structure. The purpose of the analysis and test is to evaluate an safety which body structure shall be considered fully sufficient rigidity so as to satisfy proper system function under maximum load and operating condition. Material of body structure applied an aluminum alloy. Body structure consist of side frame, under frame, roof frame, end frame. Both FEM analysis and load test are based on 'Performance Test Standard for Electrical Multiple Unit, noticed by Ministry of Construction & Transportation, in 2000' and reference code is JIS E 7105. The test results have been very safety and stable fer design load conditions.

  • PDF

Cyclic test for solid steel reinforced concrete frames with special-shaped columns

  • Liu, Zu Q.;Xue, Jian Y.;Zhao, Hong T.;Gao, Liang
    • Earthquakes and Structures
    • /
    • 제7권3호
    • /
    • pp.317-331
    • /
    • 2014
  • An experimental study was performed to investigate the seismic performance of solid steel reinforced concrete (SRC) frames with special-shaped columns that are composed of SRC special-shaped columns and reinforced concrete beams. For this purpose, two models of two-bay and three-story frame, including an edge frame and a middle frame, were designed and tested. The failure process and patterns were observed. The mechanical behaviors such as load-displacement hysteretic loops and skeleton curves, load bearing capacity, drift ratio, ductility, energy dissipation and stiffness degradation of test specimens were analyzed. Test results show that the failure mechanism of solid SRC frame with special-shaped columns is the beam-hinged mechanism, satisfying the seismic design principle of "strong column and weak beam". The hysteretic loops are plump, the ductility is good and the capacity of energy dissipation is strong, indicating that the solid SRC frame with special-shaped columns has excellent seismic performance, which is better than that of the lattice SRC frame with special-shaped columns. The ultimate elastic-plastic drift ratio is larger than the limit value specified by seismic code, showing the high capacity of collapse resistance. Compared with the edge frame, the middle frame has higher carrying capacity and stronger energy dissipation, but the ductility and speed of stiffness degradation are similar. All these can be helpful to the designation of solid SRC frame with special-shaped columns.

국제 철도 연맹 규정(UIC Code)에 따른 RCV 대차 프레임 구조 안전성 평가 (RCV bogie frame structure safety evaluation according to UIC Code)

  • 노상철;박지형;강신유
    • 산업기술연구
    • /
    • 제43권1호
    • /
    • pp.7-13
    • /
    • 2023
  • Nowadays, traffic congestion is emerging as a major problem due to the rapid population growth and the increase in automobiles. The train is a convenient means of transportation that can efficiently solve these problems. Trains have been developed in line with human aspirations for a long time, but research on safety is still insufficient. This study aims to check safety by conducting static tests and fatigue tests on bogie frames, and to help develop bogie frames in the future. For the static test, a strain gauge was attached to the point where the local stress concentration was expected beforehand, and the result value was derived, compared with existing theories, and expressed as a Goodman diagram. In the fatigue test, a total of 10 million loads were applied over three stages, and no cracks appeared in the non-destructive test conducted after each stage. Both tests were conducted according to the strict test method of the bogie frame presented by the UIC Code. It satisfied both fatigue life and strength evaluation criteria and was judged to be a bogie frame usable for safe train production.

하중시험에 의한 대차의 강도 평가 (Strength Evaluation of Bogie by Loading Test)

  • 윤성철;권성태;김명룡;이강원
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.622-627
    • /
    • 2004
  • This paper describes the result of load test of bogie frame. The purpose of test is to evaluate an safety which bogie frame shall be considered fully sufficient rigidity so as to satisfy proper system function under maximum load. Bogie system consist of bogie frame, suspensions, wheel-sets, brake system and transmission system. Among these component, the bogie frame is the most significant component subjected to the vehicle and passenger loads. The evaluation method is used the JIS E 4207 specification throughout the static load test. The test results have been very safety and stable for design load conditions.

  • PDF

UIC code에 따른 대차 프레임 구조해석 및 시험에 관한 연구 (A Study on the Structural Analysis and Test of the Bogie Frame According to UIC Code)

  • 최중호;송시엽;천홍정;전형용;박형순
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 추계학술대회 논문집(II)
    • /
    • pp.884-891
    • /
    • 2002
  • This report is the result performed the structural analysis and the static and fatigue load test of bogie frame for the purpose of designing and verifying the bogie frame which satisfy the load condition required in the UIC code. This investigation is proposed the efficient draft of the design to satisfy the load condition required in the UIC code. And It is performed the structural analysis to evaluate the static strength and the fatigue life of the patient material and the welded part. Also, This is proposed the efficient draft of the test to satisfy the method of the static and fatigue test required in the UC code. And it is carried out the static and the fatigue load test to verify it. We can designed the bogie frame in compliance with UIC 515-4 and 615-4 code.

  • PDF

용접 순서의 변화에 따른 자동차용 Frame의 변형과 잔류 응력 분석 (Deformation and Residual Stress Analysis of Automotive Frame Following as Welding Sequency Variation)

  • 박태원;김기주;원시태;한창평
    • 한국자동차공학회논문집
    • /
    • 제21권3호
    • /
    • pp.50-57
    • /
    • 2013
  • The high temperature thermal attacks in welding can affect the residual stress of a frame for automotive assembly accompanying frame deformation. Also the residual stress can induce the negative effect on durability performance of the automobile. In order to analyze the frame deformation, the simplified test frame which had the similar shape (form) of the real automotive frame was fabricated. The contactless optical 3D scanner was used for the shape difference measurement of the frame between before and after the welding. The FE-model of the test frame was composed and the deformation and residual stress simulation were performed. The simulated results were compared with the measured results for the reference of the frame design following as the variation of welding sequency. The deformation shape of the frame by simulation was in good agreement with that by the experimental measurement. In addition, the optimized welding sequency with reduced deformation after welding could be achieved through these analyses.