• Title/Summary/Keyword: TENG(Triboelectric Nanogenerator)

Search Result 24, Processing Time 0.023 seconds

Eco-Friendly Powder and Particles-Based Triboelectric Energy Harvesters

  • Rayyan Ali Shaukat;Jihun Choi;Chang Kyu Jeong
    • Journal of Powder Materials
    • /
    • v.30 no.6
    • /
    • pp.528-535
    • /
    • 2023
  • Since their initial development in 2012, triboelectric nanogenerators (TENGs) have gained popularity worldwide as a desired option for harnessing energy. The urgent demand for TENGs is attributed to their novel structural design, low cost, and use of large-scale materials. The output performance of a TENG depends on the surface charge density of the friction layers. Several recycled and biowaste materials have been explored as friction layers to enhance the output performance of TENGs. Natural and oceanic biomaterials have also been investigated as alternatives for improving the performance of TENG devices. Moreover, structural innovations have been made in TENGs to develop highly efficient devices. This review summarizes the recent developments in recycling and biowaste materials for TENG devices. The potential of natural and oceanic biowaste materials is also discussed. Finally, future outlooks for the structural developments in TENG devices are presented.

Triboelectric Nanogenerator Utilizing Metal-to-Metal Surface Contact (금속-금속 표면 접촉을 활용한 정전 소자)

  • Chung, Jihoon;Heo, Deokjae;Lee, Sangmin
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.301-306
    • /
    • 2019
  • Triboelectric nanogenerator (TENG) is one of the energy harvesting methods in spotlight that can convert mechanical energy into electricity. As TENGs produce high electrical output, previous studies have shown TENGs that can power small electronics independently. However, recent studies have reported limitations of TENG due to air breakdown and field emission. In this study, we developed a triboelectric nanogenerator that utilizes the metal-to-metal surface contact to induce ion-enhanced field emission and electron avalanche for electrons to flow directly between two electrodes. The average peak open-circuit voltage of this TENG was measured as 340 V, and average peak closed-circuit current was measured as 10 mA. The electrical output of this TENG has shown different value depending on the surface charge of surface charge generation layer. The TENG developed in this study have produced RMS power of 0.9 mW, which is 2.4 times higher compared to conventional TENGs. The TENG developed in this study can be utilized in charging batteries and capacitors to power portable electronics and sensors independently.

Development of Electret to Improve Output and Stability of Triboelectric Nanogenerator (마찰대전 나노발전기의 출력 및 안정성 향상을 위한 일렉트렛 개발)

  • Kam, Dongik;Jang, Sunmin;Yun, Yeongcheol;Bae, Hongeun;Lee, Youngjin;Ra, Yoonsang;Cho, Sumin;Seo, Kyoung Duck;Cha, Kyoung Je;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.93-99
    • /
    • 2022
  • With the rapid development of ultra-small and wearable device technology, continuous electricity supply without spatiotemporal limitations for driving electronic devices is required. Accordingly, Triboelectric nanogenerator (TENG), which utilizes static electricity generated by the contact and separation of two different materials, is being used as a means of effectively harvesting various types of energy dispersed without complex processes and designs due to its simple principle. However, to apply the TENG to real life, it is necessary to increase the electrical output. In addition, stable generation of electrical output, as well as increase in electrical output, is a task to be solved for the commercialization of TENG. In this study, we proposed a method to not only improve the output of TENG but also to stably represent the improved output. This was solved by using the contact layer, which is one of the components of TENG, as an electret for improved output and stability. The utilized electret was manufactured by sequentially performing corona charging-thermal annealing-corona charging on the Fluorinated ethylene propylene (FEP) film. Electric charges artificially injected due to corona charging enter a deep trap through the thermal annealing, so an electret that minimizes charge escape was fabricated and used in TENG. The output performance of the manufactured electret was verified by measuring the voltage output of the TENG in vertical contact separation mode, and the electret treated to the corona charging showed an output voltage 12 times higher than that of the pristine FEP film. The time and humidity stability of the electret was confirmed by measuring the output voltage of the TENG after exposing the electret to a general external environment and extreme humidity environment. In addition, it was shown that it can be applied to real-life by operating the LED by applying an electret to the clap-TENG with the motif of clap.

3D Porous Foam-based Triboelectric Nanogenerators for Energy Harvesting (3차원 기공구조를 이용한 정전기반 에너지 하베스팅 나노발전기 소자제조)

  • Jeon, Sangheon;Jeong, Jeonghwa;Hong, Suck Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.1
    • /
    • pp.9-15
    • /
    • 2019
  • Here, we present a facile route to fabricate a vertically stacked 3D porous structure-based triboelectric nanogenerator (TENG) that can be used to harvest energy from the friction in a repetitive contact-separation mode. The unit component of TENG consists of thin Al foil electrodes integrated with microstructured 3D foams such as Ni, Cu, and polyurethane (PU), which provide advantageous tribo-surfaces specifically to increase the friction area to the elastomeric counter contact surfaces (i.e., polydimethylsiloxane, PDMS). The periodic contact/separation-induced triboelectric power generation from a single unit of the 3D porous structure-based TENG was up to $0.74mW/m^2$ under a mild condition. To demonstrate the potential applications of our approach, we applied our TENGs to small-scale devices, operating 48 LEDs and capacitors. We envision that this energy harvesting technology can be expanded to the applications of sustainably operating portable electronic devices in a simple and cost-effective manner by effectively harvesting wasted energy resources from the environment.

Fabrication and Characterization of Triboelectric Nanogenerator based on Porous Animal-collagen (다공성 동물성-콜라겐을 이용한 마찰전기 나노발전기 제작 및 특성평가)

  • Shenawar Ali Khan;Sheik Abdur Rahman;Woo Young Kim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.179-187
    • /
    • 2023
  • Nanogenerators containing biomaterials are eco-friendly electronic devices in terms of being a non-polluting energy source and biodegradable electronic waste. In particular, the amount of waste will be also reduced if the biomaterial can be extracted from biowaste. In this study, a triboelectric nanogenerator was fabricated using animal collagen present in the skin of a mammal and its characteristion was proformed. The electro-anodic layer of the triboelectric nanogenerator was constructed by forming a collagen film using the spin coating method, and it was confirmed that the film was porous from scanning electron microscopy. The fabricated triboelectric nanogenerator exhibited an open-circuit voltage from 7 V at 3 Hz to 15 V at 5 Hz due to periodic mechanical movement, and a short-circuit current of 3.8 uA at 5 Hz. In conclusion, collagen-containing triboelectric nanogenerators can be power source for low-power operating devices such as sensors and are also expected to be useful for reducing electronic waste.

Membrane Based Triboelectric Nanogenerator: A Review (막 기반 마찰전기 나노 발전기: 총설)

  • Rabea Kahkahni;Rajkumar Patel
    • Membrane Journal
    • /
    • v.33 no.2
    • /
    • pp.53-60
    • /
    • 2023
  • Mechanical energy can be harvested by triboelectric nanogenerators (TENG) from biological and environmental systems. In wearable electronics, TENG has a lot of significance as biomechanical energy can be harvested from the motion of humans, which is applied in vibrational sensors. Wearable TENG is prone to moisture and polytetrafluoroethylene (PTFE) is an excellent hydrophobic material used in these applications. The presence of highly electronegative fluorine atoms leads to very low surface energy. At the same time, the performance of the device increases due to the efficient capture of the electrons on the microporous membrane surface. This similar behavior occurs with polyvinylidene fluoride (PVDF) due to the presence of fluoride atoms, which is relatively less as compared to PTFE.

Highly Reliable Triboelectric Rotational Energy Scavenger

  • Lee, Younghoon;Lee, Bada;Choi, Dukhyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.397-397
    • /
    • 2016
  • Triboelectric nanogenerators (TENG) can produce power from ambient mechanical sources and have strong points of high output performance, light weight, low cost, and easy manufacturing process. It is expected that TENG can be utilized in the fields of wireless electronics and self-powered devices in the world which pays attention to healthcare and the IoT. In this work, we focus on scavenging ambient rotational energy by using a durably designed TENG. In previous studies regarding harvesting rotation mode energy, the devices were based on sliding mechanism and durability was not considered as a major issue. However friction by rotation causes reliability problems due to wear and tear. Therefore, in this study, we convert rotary motion to linear motion utilizing a cam by which we can then utilize contact-mode TENG and improve device reliability. In order to increase output performance, bumper springs were used below the TENG and the optimum value for the bumper spring constant was analyzed theoretically. Furthermore, the inserting a soft substrate was proposed and its effect on high output was determined to be due to an increase in the contact area. By increasing the number of cam noses, the output frequency was shown to increase linearly. For the purpose of maximum power transfer, the input impedance of the device was determined. Finally, to demonstrate the use of the C-TENG as a direct power source, it was installed on a commercial bicycle wheel and connected to 180 LEDs. In conclusion we present a rotational motion TENG energy scavenger system designed for enhanced durability and optimized output by appropriate choice of spring constants and substrate.

  • PDF

Three-Stage Power Management System Employing Impedance Coupler Switch for Triboelectric Nanogenerator (마찰전기 나노발전기를 위한 임피던스 커플러 스위치를 탑재한 3단계 전력 관리 시스템)

  • Yoon, Bo-Kyung;Lee, Jun-Young;Jun, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.4
    • /
    • pp.243-250
    • /
    • 2020
  • Energy harvesting is a recent technology involving the harvest and utilization of extremely small surrounding energy. Energy harvesting research is conducted in various fields. Triboelectric nanogenerators (TENGs) are energy harvesting technologies that use static electricity generated by physical movement or friction. Although TENGs generate output power in microwatt levels, they experience high internal impedance compared with other energy harvesting generators, thereby making the continuous transfer of electric power to loads difficult. This study proposes a power management system for TENGs that consists of three stages, that is, an AC/DC rectifier, an impedance coupler switch with a capacitor bank, and a DC/DC converter. In addition, the selection method of the AC/DC rectifier and DC/DC converter is proposed to maximize the amount of power transferred from energy harvesting areas. Furthermore, the impedance coupler switch and capacitor bank are discussed in detail. The validity and performance of the proposed three-stage power management system for TENGs are verified using a prototype system.

Evaluation of h-BN Nanoflakes/Polyimide Composites for a Triboelectric Nanogenerator (육방정질화붕소 나노플레이크/폴리이미드 복합체를 이용한 마찰전기 나노발전기 평가)

  • Park, Sunyoung;Byun, Doyoung;Cho, Dae-Hyun
    • Tribology and Lubricants
    • /
    • v.37 no.4
    • /
    • pp.125-128
    • /
    • 2021
  • A means of enhancing the performance of triboelectric nanogenerators (TENGs) is increasing the differences in work functions between contacting materials. Hexagonal boron nitride (h-BN) exhibits excellent mechanical properties and high chemical stability as well as a high work function. As a result, engineers in the field of energy harvesting have envisioned using h-BN in the electrification layer in TENGs. For the industrial application of h-BN in TENGs, large-scale production is necessary, and h-BN is generally exfoliated and dispersed in various solvents. In this study, we evaluate the performance of a TENG with h-BN nanoflakes in the polyimide (PI) layer. To synthesize a PI composite containing h-BN nanoflakes, h-BN powders are exfoliated and dispersed in poly(amic acid) (PAA), which is the precursor of PI. Then, h-BN dispersion is spin-coated onto the PI film and cured for 2 h under 300℃. This composite material can then be used for the electrification layer in TENGs. Below the electrification layer, an aluminum foil is placed and used as an electrode. When the contact and separation processes with polyethylene terephthalate are repeated, the fabricated TENG shows a maximum power density of 190.8 W/m2. This study shows that h-BN is a promising material for enhancing the performance of the electrification layer in TENGs.

A Development of Energy Storage Monitoring System Architecture for Triboelectric Nanogenerator in the Implant Environment (임플란트 환경에서 TENG 소자를 고려한 효율적인 에너지 저장 모니터링 시스템 개발)

  • Park, Hyun-Moon;Hwang, Tae-Ho;Kim, Dong-Sun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.2
    • /
    • pp.473-480
    • /
    • 2018
  • In 2012, a new energy capturing method called TENG was suggested for energy harvesting applications. The TENG which captures electric energy in forms of friction or vibration has been researched as a new energy harvesting generation device. However, TENG works on rather high voltage and yields relatively low current, and this requires additional energy conversion and saving methods with either in semiconductive elements or circuitry for its application. Irregular generation from vibration sources rattle under 5Hz especially requires empirical studies. In this article, we suggest a electricity generation platform with energy storage methods. The platform is mounted on large sized animals, and the generation is actively monitored and controlled via Bluetooth-Low Energy to verify the platform.