• Title/Summary/Keyword: TEMPERATURE DATA LOGGER

Search Result 63, Processing Time 0.019 seconds

Heat Insulation Characteristics of Multi Layer Materials for Greenhouse (시설원예용 조합형 다겹보온자재의 보온 특성)

  • Chung, Sung-Won;Kim, Dong-Keon;Lee, Suk-Gun;Nam, Sang-Heon;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.18 no.4
    • /
    • pp.341-347
    • /
    • 2009
  • Experiments and computations were conducted to investigate the heat insulation characteristics of multi layer materials for cultivation greenhouse. In case of the experiments, measurements of temperature were carried out with a K-type thermocouples and data logger to research the heat transfer in the experimental module generated by the heat source. A thermal conductivity meter, QTM-500 based on modified transient hot wire method was used to measure the thermal conductivity of multi layer materials. The numerical analyses were performed by commercial code CFX-11 according to the variation of multi layer materials without air layer. The experimental results showed that the heat insulation of multi layer materials was higher than single layer materials by 50~90%. It was found that the effect of heat insulation was raised by the combination of multi layer materials.

Flow Analysis and an Experimental Study on Formation of Slurry Ice in the Reversing Flow Layer (역전 유동층 내의 유동해석 및 슬러리아이스 생성에 관한 연구)

  • Oh, Cheol;Choi, Young-Gyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.421-428
    • /
    • 2011
  • Thermal energy storage(TES) cooling system using cheaper electricity of off-peak time has been applied to relieve a significant portion of the peak demand of electricity during the daytime in summer. Slurry ice type thermal energy storage cooling system is one kind of more efficient ice-thermal energy storage cooling system than Ice-on-Coil type or Encapsulated type TES cooling system, even though, which are more popular TES system. This experimental study was carried out to observe flow pattern and formation of slurry ice in reversing flow layer to improve efficiency of heat transfer between fluid and freezing tube and to disturb ice adhesion on tube surface. The reversing flow layer was made by using reversing materials in heat exchanger section(test section) to disturb ice adhesion. At this experiment, styrofoam balls and poly propylene balls were used as reversing materials, and a 20wt% solution of ethylene glycol was used as reversing flow layer. The experimental apparatus was constructed of the test section for making/storing slurry ice, the brine tank, pumps for circulating of a 20wt% solution of ethylene glycol and brine, a flow-meter, a data logger for measuring the temperature. The experiments were carried out under various conditions, with volumetric flow rate, ball filling rate and air filling rate.

Investigation of Microbial Contamination Levels of Leafy Greens and Its Distributing Conditions at Different Time - Focused on Perilla leaf and Lettuce - (시기별 엽채류의 미생물 오염도와 유통 조건 조사 - 들깻잎과 상추를 중심으로 -)

  • Kim, Won-Il;Jung, Hyang-Mi;Kim, Se-Ri;Park, Kyeong-Hun;Kim, Byung-Seok;Yun, Jong-Chul;Ryu, Kyoung-Yul
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.3
    • /
    • pp.277-284
    • /
    • 2012
  • The objective of this study was to investigate and evaluate microbial contamination levels of leafy greens (perilla leaf and lettuce) and its distributing conditions at different seasons (Feb, May, Aug, and Nov of the year 2011) in order to provide insight into any potential health hazards associated with consumption of these commodities. Leafy greens were collected from a farm located in Geumsan, Chungnam and wholesale markets (WM) and traditional markets (TM) located in Suwon. At the same time, temperature and relative humidity fluctuations experienced by the leafy greens during distribution from the farm to the distribution center were measured by a data logger. The contamination levels of perilla leaf and lettuce were determined by analyzing total plate count. Coliform groups, Bacillus cereus, Escherichia coli, Escherichia coli O157:H7, Salmonella spp., Listeria monocytogenes and Staphylococcus aureus were determined. The contamination levels of total aerobic bacteria, coliform groups and B. cereus in both vegetables sampled during May and August found to be higher than those sampled during February and November. E. coli O157:H7, Salmonella spp., L. monocytogenes were not detected in the vegetables analyzed in this study. There were no significant trends between samples at WM and TM in the contamination levels. Relative humidity of vegetables distributed from the farm to the distribution center showed over 90% during distribution regardless of measured seasons. In the case of background microflora on leafy greens, the density was significantly increased at 20, 30 and $37^{\circ}C$ during storage of 24h. E. coli O157:H7 and B. cereus inoculated on the leaves also showed similar increases in the storage tests. The microbial contamination levels determined in this study may be used as the fundamental data for microbial risk assessment.