• Title/Summary/Keyword: TEC anomaly

Search Result 11, Processing Time 0.02 seconds

Mapping the East African Ionosphere Using Ground-based GPS TEC Measurements

  • Mengist, Chalachew Kindie;Kim, Yong Ha;Yeshita, Baylie Damtie;Workayehu, Abyiot Bires
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.29-36
    • /
    • 2016
  • The East African ionosphere (3°S-18°N, 32°E-50°E) was mapped using Total Electron Content (TEC) measurements from ground-based GPS receivers situated at Asmara, Mekelle, Bahir Dar, Robe, Arbaminch, and Nairobi. Assuming a thin shell ionosphere at 350 km altitude, we project the Ionospheric Pierce Point (IPP) of a slant TEC measurement with an elevation angle of >10° to its corresponding location on the map. We then infer the estimated values at any point of interest from the vertical TEC values at the projected locations by means of interpolation. The total number of projected IPPs is in the range of 24-66 at any one time. Since the distribution of the projected IPPs is irregularly spaced, we have used an inverse distance weighted interpolation method to obtain a spatial grid resolution of 1°×1° latitude and longitude, respectively. The TEC maps were generated for the year 2008, with a 2 hr temporal resolution. We note that TEC varies diurnally, with a peak in the late afternoon (at 1700 LT), due to the equatorial ionospheric anomaly. We have observed higher TEC values at low latitudes in both hemispheres compared to the magnetic equatorial region, capturing the ionospheric distribution of the equatorial anomaly. We have also confirmed the equatorial seasonal variation in the ionosphere, characterized by minimum TEC values during the solstices and maximum values during the equinoxes. We evaluate the reliability of the map, demonstrating a mean error (difference between the measured and interpolated values) range of 0.04-0.2 TECU (Total Electron Content Unit). As more measured TEC values become available in this region, the TEC map will be more reliable, thereby allowing us to study in detail the equatorial ionosphere of the African sector, where ionospheric measurements are currently very few.

The First Measurement of Seasonal Trends in the Equatorial Ionospheric Anomaly Trough at the CHUK GNSS Site During the Solar Maximum in 2014

  • Chung, Jong-Kyun;Yoo, Sung-Moon;Lee, Wookyoung
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.287-293
    • /
    • 2016
  • The equatorial region of the Earth's ionosphere exhibits large temporal variations in electron density that have significant implications on satellite signal transmissions. In this paper, the first observation results of the variations in the trough of the equatorial ionospheric anomaly at the permanent Global Navigation Satellite System (GNSS) site in Chuuk (Geographic: $7.5^{\circ}N$, $151.9^{\circ}E$; Geomagnetic: $0.4^{\circ}N$) are presented. It was found that the daytime Global Positioning System (GPS) total electron content (TEC) values vary according to the 27 day period of solar rotation, and that these trends show sharp contrast with those of summer. The amplitudes of the semi-annual anomaly were 12.4 TECU (33 %) on $19^{th}$ of March and 8.8 TECU (23 %) on $25^{th}$ of October respectively, with a yearly averaged value of 38.0 TECU. The equinoctial asymmetry at the March equinox was higher than that at the October equinox rather than the November equinox. Daily mean TEC values were higher in December than in June, which could be interpreted as annual or winter anomalies. The nighttime GPS TEC enhancements during 20:00-24:00 LT also exhibited the semi-annual variation. The pre-midnight TEC enhancement could be explained with the slow loss process of electron density that is largely produced during the daytime of equinox. However, the significant peaks around 22:00-23:00 LT at the spring equinox require other mechanisms other than the slow loss process of the electron density.

Detection algorithm of ionospheric delay anomaly based on multi-reference stations for ionospheric scintillation

  • Yoo, Yun-Ja;Cho, Deuk-Jae;Park, Sang-Hyun;Shin, Mi-Young
    • Journal of Navigation and Port Research
    • /
    • v.35 no.9
    • /
    • pp.701-706
    • /
    • 2011
  • Radio waves including GPS signals, various TV communications, and radio broadcasting can be disturbed by a strong solar storm, which may occur due to solar flares and produce an ionospheric delay anomaly in the ionosphere according to the change of total electron content. Electron density irregularities can cause deep signal fading, frequently known as ionospheric scintillation, which can result in the positioning error using GPS signal. This paper proposes a detection algorithm for the ionosphere delay anomaly during a solar storm by using multi-reference stations. Different TEC grid which has irregular electron density was applied above one reference station. Then the ionospheric delay in zenith direction applied different TEC will show comparatively large ionospheric zenith delay due to the electron irregularity. The ionospheric slant delay applied an elevation angle at reference station was analyzed to detect the ionospheric delay anomaly that can result in positioning error. A simulation test was implemented and a proposed detection algorithm using data logged by four reference stations was applied to detect the ionospheric delay anomaly compared to a criterion.

Investigation of Ionospheric Earthquake Precursors Using US-TEC Data during the Solar Maximum of 2013-2015

  • Park, Jeongchan;Park, Sun Mie
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.61-68
    • /
    • 2020
  • Recent studies have suggested that detectable ionospheric disturbances precede earthquakes. In the present study, variations in the vertical total electron content (TEC) for eight earthquakes with magnitudes of M ≥ 5.5 in the western United States were investigated during the solar maximum of 2013-2015 using United States total electron content (US-TEC) data provided by the National Oceanic and Atmospheric Administration. Analyses of 12 earthquakes with magnitudes of 5.0 ≤ M < 5.5 in the same region were also performed. The TEC variations were examined for 40 days, including the times when the earthquakes occurred. The results indicated a correlation between earthquakes with magnitudes of M ≥ 5.0 and ionospheric TEC anomalies. TEC anomalies occurred before 60% of the earthquakes. Additionally, they were more frequently observed for large earthquakes (75%, M ≥ 5.5) than for small earthquakes (50%, 5.5 > M ≥ 5.0). Anomalous increases in the TEC occurred 2-18 days before the earthquakes as an ionospheric precursor, whereas solar and geomagnetic activities were low or moderate.

Plasmaspheric contribution to the GPS TEC

  • Jee, Geon-Hwa;Lee, Han-Byul;Kim, Yong-Ha;Chung, Jong-Kyun;Cho, Jung-Ho
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.30.3-31
    • /
    • 2010
  • We performed a comprehensive comparison between GPS Global Ionosphere Map (GIM) and TOPEX/Jason (T-J) TEC data for the periods of 1998~2009 in order to assess the performance of GIM over the global ocean where the GPS ground stations are very sparse. Using the GIM model constructed by CODE at University of Bern, the GIM TEC values were obtained along the T-J satellite orbit at the locations and times of the measurements and then binned into various geophysical conditions for direct comparison with the T-J TECs. On the whole, the GIM model was able to reproduce the spatial and temporal variations of the global ionosphere as well as the seasonal variations. However, the GIM model was not accurate enough to represent the well-known ionospheric structures such as the equatorial anomaly, the Weddell Sea Anomaly, and the longitudinal wave structure. Furthermore, there seems to be a fundamental limitation of the model showing the unexpected negative differences (i.e., GPS < T-J) in the northern high latitude and the southern middle and high latitude regions. The positive relative differences (i.e., GIM > T-J) at night represent the plasmaspheric contribution to GPS TEC, which is maximized, reaching up to 100% of the corresponding T-J TEC values in the early morning sector. In particular, the relative differences decreased with increasing solar activity and this may indicate that the plasmaspheric contribution to the maintenance of the nighttime ionosphere does not increase with solar activity, which is different from what we normally anticipate. Among these results, the plasmaspheric contribution to the ionospheric GPS TEC will be presented in this talk and the rest of it will presented in the companion paper (poster presentation).

  • PDF

Seasonal and solar activity variations of the Weddell Sea Anomaly observed in the TOPEX TEC measurements

  • Jee, Geon-Hwa;Burns, Alan G.;Kim, Yong-Ha;Wang, Wen-Bin
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.25.1-25.1
    • /
    • 2008
  • The Weddell Sea Anomaly (WSA) in the ionosphere is characterized by higher plasma density at night than during the day in the region near the Weddell Sea. According to previous studies on the WSA, it is known to occur mostly in southern summer and has not been reported in other seasons. We have utilized more than 13-year TOPEX TEC measurements in order to study how the WSA varies with seasons and how it changes with solar activity. The TOPEX TEC data have been extensively utilized for the climatological study of the ionosphere due to its excellent spatial and temporal coverage. We investigate the seasonal and solar activity variations of the WSA using four seasonal cases (Mar. equinox, Jun. solstice, Sep, equinox, and Dec. solstice) and two solar activity conditions (F10.7<120 for solar minimum and F10.7>120 for solar maximum conditions) for geomagnetically quiet periods. Our analysis shows that the WSA occurs only in the southern summer hemisphere for low F10.7, as in previous studies, but the WSA occurs all of seasons except for winter when F10.7 is high: it is most prominent during the December solstice (southern summer) and still strong during both equinoxes. The WSA appears to be an extreme case of global longitudinal variations at mid- and high-latitudes.

  • PDF

Based on Multiple Reference Stations Ionospheric Anomaly Monitoring Algorithm on Consistency of Local Ionosphere (협역 전리층의 일관성을 이용한 다중 기준국 기반 전리층 이상 현상 감시 기법)

  • Song, Choongwon;Jang, JinHyeok;Sung, Sangkyung;Lee, Young Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.7
    • /
    • pp.550-557
    • /
    • 2017
  • Ionospheric delay, which affect the accuracy of GNSS positioning, is generated by electrons in Ionosphere. Solar activity level, region and time could make change of this delay level. Dual frequency receiver could effectively eliminate the delay using difference of refractive index between L1 to L2 frequency. But, Single frequency receiver have to use limited correction such as ionospheric model in standalone GNSS or PRC(pseudorange correction) in Differential GNSS. Generally, these corrections is effective in normal condition. but, they might be useless, when TEC(total electron content) extremely increase in local area. In this paper, monitoring algorithm is proposed for local ionospheric anomaly using multiple reference stations. For verification, the algorithm was performed with specific measurement data in Ionospheric storm day (20. Nov. 2003). this algorithm would detect local ionospheric anomaly and improve reliability of ionospheric corrections for standalone receiver.

Global Positioning System Total Electron Content Variation over King Sejong Station in Antarctic under the Solar Minimum Condition Between 2005 and 2009

  • Chung, Jong-Kyun;Jee, Geon-Hwa;Lee, Chi-Na
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.4
    • /
    • pp.305-310
    • /
    • 2011
  • The total electron content (TEC) using global positioning system (GPS) is analyzed to see the characteristics of ionosphere over King Sejong station (KSJ, geographic latitude $62^{\circ}13'S$, longitude $58^{\circ}47'W$, corrected geomagnetic latitude $48^{\circ}S$) in Antarctic. The GPS operational ratio during the observational period between 2005 and 2009 is 90.1%. The annual variation of the daily mean TEC decreases from January 2005 to February 2009, but increase from the June 2009. In summer (December-February), the seasonal mean TEC values have the maximum of 26.2 ${\pm}$ 2.4 TEC unit (TECU) in 2005 and the minimum of 16.5 ${\pm}$ 2.8 TECU in 2009, and the annual differences decrease from 3.0 TECU (2005-2006) to 1.4 TECU (2008-2009). However, on November 2010, it significantly increases to 22.3 ${\pm}$ 2.8 TECU which is up to 5.8 TECU compared with 2009 in summer. In winter (June-August), the seasonal mean TEC slightly decreases from 13.7 ${\pm}$ 4.5 TECU in 2005 to 8.9 ${\pm}$ 0.6 TECU in 2008, and the annual difference is constantly about 1.6 TECU, and increases to 10.3 ${\pm}$ 1.8 TECU in 2009. The annual variations of diurnal amplitude show the seasonal features that are scattered in summer and the enhancements near equinoxes are apparent in the whole years. In contrast, the semidiurnal amplitudes show the disturbed annual peaks in winter and its enhancements near equinoxes are unapparent. The diurnal phases are not constant in winter and show near 12 local time (LT). The semidiurnal phases have a seasonal pattern between 00 LT and 06 LT. Consequently, the KSJ GPS TEC variations show the significant semidiurnal variation in summer from December to February under the solar minimum between 2005 and 2009. The feature is considered as the Weddell Sea anomaly of larger nighttime electron density than a daytime electron density that has been observed around the Antarctica peninsula.

Comparison and Application of Deep Learning-Based Anomaly Detection Algorithms for Transparent Lens Defects (딥러닝 기반의 투명 렌즈 이상 탐지 알고리즘 성능 비교 및 적용)

  • Hanbi Kim;Daeho Seo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.47 no.1
    • /
    • pp.9-19
    • /
    • 2024
  • Deep learning-based computer vision anomaly detection algorithms are widely utilized in various fields. Especially in the manufacturing industry, the difficulty in collecting abnormal data compared to normal data, and the challenge of defining all potential abnormalities in advance, have led to an increasing demand for unsupervised learning methods that rely on normal data. In this study, we conducted a comparative analysis of deep learning-based unsupervised learning algorithms that define and detect abnormalities that can occur when transparent contact lenses are immersed in liquid solution. We validated and applied the unsupervised learning algorithms used in this study to the existing anomaly detection benchmark dataset, MvTecAD. The existing anomaly detection benchmark dataset primarily consists of solid objects, whereas in our study, we compared unsupervised learning-based algorithms in experiments judging the shape and presence of lenses submerged in liquid. Among the algorithms analyzed, EfficientAD showed an AUROC and F1-score of 0.97 in image-level tests. However, the F1-score decreased to 0.18 in pixel-level tests, making it challenging to determine the locations where abnormalities occurred. Despite this, EfficientAD demonstrated excellent performance in image-level tests classifying normal and abnormal instances, suggesting that with the collection and training of large-scale data in real industrial settings, it is expected to exhibit even better performance.

Seasonal Characteristics of the Longitudinal Wavenumber-4 Structure in the Equatorial Ionospheric Anomaly

  • Kim, E.;Jee, G.;Kim, Y.H.
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.335-346
    • /
    • 2008
  • Using the global total electron contents (TEC) measured by the TOPEX satellite from Aug. 1992 to Oct. 2005, we investigate the variations of the longitudinal wavenumber-4 (LW-4) structure in the equatorial anomaly (EA) crests with season, local time, and solar activity. Our study shows that the LW-4 structure in the EA crests ($5{\sim}20^{\circ}$ MLAT in both hemispheres) has clear four peaks at fixed longitude sectors during the daytime for both equinoxes and June solstice. In spite of being called a wavelike structure, however, the magnitudes and spatial intervals of the four peaks are far from being the same or regular. After sunset, the four-peak structure begins to move eastward with gradual weakening in its amplitude during equinoxes and this weakening proceeds much faster during June solstice. Interestingly, the longitudinal variations during December solstice do not show clear four-peak structure. All these features of the LW-4 structure are almost the same for both low and high solar activity conditions although the ion densities are greatly enhanced from low to high solar activities. With the irrelevancy of the magnetic activity in the LW-4, this implies that the large changes of the upper atmospheric ion densities, one of the important factors for ion-neutral interactions, have little effect on the formation of the LW-4 structure. On the other hand, we found that the monthly variation of the LW-4 is remarkably similar to that of the zonal component of wavenumber-3 diurnal tides at low latitudes, which implies that the lower atmospheric tidal forcing, transferred to the upper atmosphere, seems to have a dominant role in producing the LW-4 structure in the EA crests via the E-region dynamo.