• 제목/요약/키워드: TE (Transmission error)

검색결과 17건 처리시간 0.085초

전달오차를 이용한 기어고장진단: 해석 vs 실험적 방법론 (Diagnostics on Gear Faults Using Transmission Error : Simulation vs Experiment)

  • 박정호;하종문;최주호;박성호;윤병동
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.499-502
    • /
    • 2014
  • This paper presents a comparison study between simulation and experiment for fault diagnostics of a spur gear. In simulation, fault diagnostics using transmission error (TE) was performed and concluded to be valid. In a real experiment, however, it is not as easy to detect faults of gears using TE as in simulation. In this paper, after seeding the various faults like tooth crack of different length, tooth breakage and spalling in test rig, TE was calculated. Then, several signal processing techniques were performed to overcome the limitations of an experiment in detecting the fault signals of TE. After signal processing, we could detect the various faults of spur gears and different amplitude of TE sparks from cracks of different length. Then we discussed the difference between simulation and experment.

  • PDF

치형수정에 의한 기어의 최적설계에 관한 연구 (A Study on the Optimism Design of the Gear Tooth Profile)

  • 손유선;황규석;탁성훈;류성기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.712-717
    • /
    • 2007
  • This study deals with the TE(Transmission Error) of gear tooth profile by modifying a profile and lead of a surface of tooth. First, we experimentally confirmed that the TE is a synthesis of the sliding velocity between both gears. Since various types of TE appear in the experiments, we introduced definition of transmission error and the optimism design by modifying a surface parameters. The test stand's performance is then evaluated through a series of multiple torque transmission error tests. Comparisons are made between data recorded before and after the test stand's redesign, and subsequently repeatability studies are performed to verify the veracity of the measured data. Finally, the experimental results are compared to the analytical predictions of two different gear analysis programs.

  • PDF

기어 전달오차 측정 장비의 설계에 관한 연구 (A Study on the Design of a Gear Transmission Error Test Rig)

  • 장기;장정;연후링;주징왕;허철수;류성기
    • 한국기계가공학회지
    • /
    • 제15권1호
    • /
    • pp.14-19
    • /
    • 2016
  • Transmission error (TE) is the most important cause of gear noise and vibration because TEs affect the changes of the force and the speed of gears. TE is usually expressed as an angular deviation, or a linear deviation measured at the pitch point and calculated at successive positions of the pinion as it goes through the meshing cycle. Accurate measurement of TE for gear transmission will provide a reasonable basis for gear design, manufacturing processes and quality control. Therefore, in order to study the accuracy of the gear transmission, stability, TE, vibration and noise after gear micro-geometry modification, a gear transmission test rig is proposed in this paper, which is based on the existing technical conditions, by using reasonable testing methods, hardware and a signal processing method. All of the details and the experience can be taken into consideration in the next upgraded test rig.

전달오차를 이용한 물리기반(Physics-Based) 기어고장진단 이론연구 (Physics-based Diagnostics on Gear Faults Using Transmission Error)

  • 박정호;하종문;최주호;박성호;윤병동
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.505-508
    • /
    • 2014
  • Transmission error (TE) is defined as "the angular difference between the ideal output shaft position and actual position". As TE is one of the major source of the noise and vibration of gears, it is originally studied with relation of the noise and vibration of the gears. However, recently, with the relation of mesh stiffness, TE has been studied for fault detection of spur gear sets. This paper presents a physics-based theory on fault diagnostics of a planetary gear using transmission error. After constructing the lumped parameter model using DAFUL, multi-body dynamics software, we developed a methodology to diagnose the faults of the planetary gear including phase calculation, signal processing. Using developed methodology, we could conclude that TE could be a good signal for fault diagnostics of a planetary gear.

  • PDF

접촉하중에 따른 기어의 트랜스미션 에러에 관한 연구 (A Study on the Transmission Error of the Gear on Contact Load)

  • 탁성훈;황규석;손유선;배효제;류성기
    • Tribology and Lubricants
    • /
    • 제23권3호
    • /
    • pp.117-122
    • /
    • 2007
  • This study deals with the TE (Transmission Error) of gear tooth by modifying a profile and lead of a surface of tooth. First, we experimentally confirmed that the TE is a synthesis of the sliding velocity between both gears. Since various types of TE appear in the experiments, we introduced definition of transmission error and the optimism design by modifying a surface parameters. The test stand's performance is then evaluated through a series of multiple torque transmission error tests. Comparisons are made between data recorded before and after the test stand's redesign, and subsequently repeatability studies are performed to verify the veracity of the measured data. Finally, the experimental results are compared to the analytical predictions of two different gear analysis programs.

기어미션용 실증적 기어치형수정에 관한 연구 (Study on Empirical Gear Profile Micro-modifications for Gear Transmission)

  • 장기;왕주겐;류성기
    • 한국기계가공학회지
    • /
    • 제16권3호
    • /
    • pp.54-62
    • /
    • 2017
  • When gears mesh, shock and noise are produced as results of tooth error and tooth deformation under load. Transmission error (TE) is the most important cause of gear noise and vibration because TEs affect the changes of the force and the speed of gears. Gear tooth modification research plays a positive role in reducing TE and improving the design level and transmission performance of transmission systems. In high-precision manufacturing gear, gear tooth modification is also commonly used to reduce noise in practical applications. In order to study the accuracy of gear transmission, some empirical gear profile micro-modifications are introduced, and a helical gear pair is modeled and analyzed in RomaxDesigner software to investigate the utility of these modification methods. Some of these will be selected as experimental proposals for gear pairs, and these manufactured gears will be tested and compared in a semi-anechoic room later. The final purpose of this study is to find reasonable and convenient empirical formulae to facilitate improved gear production.

헬리컬 기어계의 가진원 성능 평가에 대한 실험적 연구 (Experimental Study on Performance Tests of Vibration Source for Helical Gears)

  • 박광민;김찬중;이재원;이봉현;김완수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.602-603
    • /
    • 2014
  • A gearbox can be regarded as a self-exciting dynamic system, which has a vibration source. Transmission error (TE) is considered to be an main excitation source for gear noise and vibration. The TE excitation is transmitted through the gears, shafts, bearings, and housings. Thus, an experimental approach to each mechanical parts is useful in order to understand and evaluate the dynamic behaviour of a gearbox. This study is focused on the transmission and vibration characteristics of a helical gear system in development stage. In addition, by considering the tolerance factors and resonance characteristics, the vibration response of actual dynamic system is analysed.

  • PDF

MODELING TRANSMISSION ERRORS OF GEAR PAIRS WITH MODIFIED TEETH FOR AUTOMOTIVE TRANSMISSIONS

  • Lee, H.W.;Park, M.W.;Joo, S.H.;Park, N.G.;Bae, M.H.
    • International Journal of Automotive Technology
    • /
    • 제8권2호
    • /
    • pp.225-232
    • /
    • 2007
  • A tooth profile modification for loaded gears is used to avoid a tooth impact. Since a tooth profile error causes amplification of the cumbersome whine noise in automotive gear transmissions, an optimal quantity of tooth profile modifications must be obtained for good performance in the vibration sense. In this paper, a tooth profile modification curve considering profile manufacturing errors and elastic deformation of the gear tooth is formulated; in addition, transmission errors of the gear system with modified teeth are verified. The equivalent excitation due to transmission errors is formulated. For experimental evaluation of the transmission error, the transmission error for a simple gear system was measured by two rotational laser vibrometers. Finally, we perform a comparative analysis between the calculated and measured responses to the excitations due to the transmission error to verify the practicability of the application to automotive transmissions.

전달오차의 EEMD적용을 통한 기어 결함분류연구 (A Study on Fault Classification by EEMD Application of Gear Transmission Error)

  • 박성호;최주호
    • 한국전산구조공학회논문집
    • /
    • 제30권2호
    • /
    • pp.169-177
    • /
    • 2017
  • 본 논문에서는 기어 전달오차의 EEMD 적용을 통한 기어 이빨의 박리결함과 균열결함의 분류법을 소개한다. 두 가지 결함을 적용한 기어의 유한요소모델을 바탕으로 전달오차를 획득하고 전달오차에서 나타나는 두 가지 결함의 특징과 정상상태의 전달오차와의 차이를 나타내는 RTE에서 나타나는 두 가지 결함의 특징을 확인했으며 유한요소해석 결과를 이용한 시뮬레이션 신호를 구성하여 신호처리를 통한 RTE 획득과정을 구성하였다. 시뮬레이션 신호로부터 얻은 RTE의 EEMD 적용을 통하여 박리과 균열의 신호가 각기 다른 IMF에서 비중이 크다는 것을 확인하였고, 이를 실험을 통해 검증하고자 하였다. 한 쌍의 기어와 서보모터, 파우더브레이크 그리고 기어의 회전량을 측정하기 위한 엔코더로 구성되어있는 테스트베드를 꾸려 전달오차를 획득하였다. 두 개의 기어를 이용하여 정상, 박리, 균열 세가지 상황에 대한 전달오차를 획득하여 시뮬레이션과 같은 과정을 거쳐 결함이 신호로 구분되는 것을 확인했다. 이를 정량화 하기위해 파고율을 각 IMF에 적용하였고 첫 번째 IMF와 세 번째 IMF의 파고율을 특징 신호로 선정하였다. 실험을 통해 확보된 데이터를 이용하여 Bayes decision 이론을 이용하여 분류 방법을 제시하였다.