• Title/Summary/Keyword: TDOA

Search Result 205, Processing Time 0.028 seconds

A Design of Multiple Jammers Localization Algorithm Based on TDOA Method (TDOA기법 기반의 다중 재머 위치 추정 알고리즘 설계)

  • Kang, Hee Won;Lim, Deok Won;Heo, Moon-Beom
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.729-737
    • /
    • 2012
  • In case that multiple jammers are transmitting the signals which are the same type a general algorithm based on TDOA method cannot estimate the positions of multiple jammers because there are many TDOA measurements including true and false values. This paper, therefore, designs a new algorithm based on TDOA method to localize multiple jammers. In this algorithm, TDOA measurements are obtained by rotating the reference sensor, and then the positions of multiple jammers can be estimated by detecting congregated point among the multiple estimated positions from TDOA measurements. Through computer simulations, it is verified that this algorithm localizes the multiple jammers well. The performance of the algorithm are also analysed by changing the distance between sensors and jammer, and sampling frequency.

Analysis of TDOA and TDOA/SS Based Geolocation Techniques in a Non-Line-of-Sight Environment

  • Huang, Jiyan;Wan, Qun
    • Journal of Communications and Networks
    • /
    • v.14 no.5
    • /
    • pp.533-539
    • /
    • 2012
  • The performance analysis of wireless geolocation in a non-line-of-sight (NLOS) environment is a very important issue. Since Cramer-Rao lower bound (CRLB) determines the physical impossibility of the variance of an unbiased estimator being less than the bound, many studies presented the performance analysis in terms of CRLB. Several CRLBs for time-of-arrival (TOA), pseudo-range TOA, angle-of-arrival (AOA), and signal strength (SS) based positioning methods have been derived for NLOS environment. However, the performance analysis of time difference of arrival (TDOA) and TDOA/SS based geolocation techniques in a NLOS environment is still an opening issue. This paper derives the CRLBs of TDOA and TDOA/SS based positioning methods for NLOS environment. In addition, theoretical analysis proves that the derived CRLB for TDOA is the same as that of pseudo-range TOA and the TDOA/SS scheme has a lower CRLB than the TDOA (or SS) scheme.

Comparisons of Position Error Characteristics and DOP Between TOA and TDOA Technique (TOA기법과 TDOA기법의 위치 오차 특성 및 DOP 비교)

  • Shin, Dong-Ho;Sung, Tae-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.10
    • /
    • pp.923-927
    • /
    • 2000
  • This paper presents a relationship between DOP for TOA and TDOA is defined using the error covariance matrix of TDOA. It is analytically shown that the error ellipsoid of TOA is as same as that of TDOA in magnitude and in orientation, which means that DOP for TOA is identical to the DOP for TDOA. By computer simulation, the positioning performance of two methods is compared, and we verify our assertion.

  • PDF

Emitter Geolocation Based on TDOA/FDOA Measurements and Its Analysis (TDOA/FDOA 융합 기반 신호원의 위치추정 및 성능 분석)

  • Kim, Dong-Gyu;Kim, Yong-Hee;Han, Jin-Woo;Song, Kyu-Ha;Kim, Hyoung-Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.9
    • /
    • pp.746-756
    • /
    • 2013
  • The emitter geolocation method using the time difference of arrival (TDOA) and the frequency difference of arrival (FDOA) has more accurate performance comparing to the single TDOA or FDOA based method. The estimation performance varies with the sensor paring strategies, the deployment and velocities of the sensors. Therefore, to establish effective strategy on the electronic warfare system, it is required to analyze the relation between the estimation accuracy and the operational condition of sensors. However, in the conventional non-iterative method, the restriction of the deployment of sensors and the reference sensor exists. Therefore, we derive the emitter geolocation method based on a Gauss-Newton method which is available to apply to any various sensor pairs and the deployment and velocities of the sensors. In addition, simulation results are included to compare the performance of geolocation method according to the used measurements: the combined TDOA/FDOA, TDOA, and FDOA. Also, we present that the combined TDOA/FDOA method outperforms over single TDOA or FDOA on the estimation accuracy with the CEP plane.

Analysis on the Contribution of FDOA Measurement Accuracy to the Performance of Combined TDOA/FDOA Localization Systems (TDOA/FDOA 복합 위치추정 시스템에서 FDOA 측정 정확도에 따른 추정 성능 기여도 분석)

  • Kim, Dong-Gyu;Kim, Yong-Hee;Han, Jin-Woo;Song, Kyu-Ha;Kim, Hyoung-Nam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.5
    • /
    • pp.88-96
    • /
    • 2014
  • In modern electronic warfare systems, the necessity of a more accurate estimation method based on non-AOA (arrival of angle) measurement, such as TDOA and FDOA, have been increased. The previous researches using single TDOA have been carried out in terms of not only the development of emitter location algorithms but also the enhancement of measurement accuracy. Recently, however, the combined TDOA/FDOA method is of considerable interest because it is able to estimate the velocity vector of a moving emitter and acquire a pair of TDOA and FDOA measurements from a single sensor pair. In this circumstance, it is needed to derive the required FDOA measurement accuracy in order that the TDOA/FDOA combined localization system outperforms the previous single TDOA localization systems. Therefore, we analyze the contribution of FDOA measurement accuracy to emitter location, then propose the criterion based on CRLB (Cramer-Rao lower bound). Simulations are included to examine the validity of the proposed criterion by using the Gauss-Newton algorithm.

Performance Improvement of CPSP Based TDOA Estimation Using the Preemphasis (프리엠퍼시스를 이용한 CPSP 기반의 도달시간차이 추정 성능 개선)

  • Kwon, Hong-Seok;Bae, Keun-Sung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.5
    • /
    • pp.461-470
    • /
    • 2009
  • We investigate and analyze the problems encountered in frame-based estimation of TDOA (Time Difference of Arrival) using CPSP function. Spectral leakage occurring in framing of a speech signal by a rectangular window could make estimation of CPSP spectrum inaccurate. Framing with other windows to reduce the spectral leakage distorts the signal due to the asynchronous weighting around the frame specifically both ends of the frame. These problems degrade the performance of the CPSP-based TDOA estimation. In this paper, we propose a method to alleviate those problems by pre-emphasis of the speech signal. It reduces the influence of the spectral leakage by reducing dynamic range of the spectrum of a speech signal with pre-emphasis. To validate the proposed method of pre-emphasis, we carry out TDOA estimation experiments in various noise and reverberation conditions, Experimental results have shown that the framing of pre-emphasized microphone output by a rectangular window achieves higher success rate of TDOA estimation than any other framing methods.

A Location Estimation Method Using TDOA Scheme in Vessel Environment (선박 환경에서 TDOA 기법에 의한 위치 추정 방법)

  • Kim, Beom-mu;Jeong, Min A;Lee, Seong Ro
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.8
    • /
    • pp.1934-1942
    • /
    • 2015
  • An estimation problem in the environment which GPS signals do not reach, should be solved by employing an indoor location estimation scheme. Location estimation schemes for indoor environments generally include the AOA, TOA, RSS, Fingerprint, and TDOA. For a ship environment where there exist many spaces enclosed by iron plates, the TDOA scheme is appropriate because location estimation is usually performed at a closed range. In this paper, we address the problem of estimating the location of a terminal under the ship environment. The problem of location estimation by using the TDOA is presented in detail, and then an algorithm for applying the estimation to the ship environment is proposed. Finally, the proposed algorithm of location estimation in a ship by the TDOA scheme is verified through simulations from three viewpoints.

3-D Sound Source Localization using Energy-Based Region Selection and TDOA (에너지 기반 영역 선택과 TDOA에 의한 3차원 음원 위치 추정)

  • Yiwere, Mariam;Rhee, Eun Joo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.294-300
    • /
    • 2017
  • This paper proposes a method for 3-D sound source localization (SSL) using region selection and TDOA. 3-D SSL involves the estimation of an azimuth angle and an elevation angle. With the aim of reducing the computation time, we compare signal energies to select one out of three regions. In the selected region, we compute only one TDOA value for the azimuth angle estimation. Also, to estimate the vertical angle, we choose the higher energy signal from the selected region and pair it up with the elevated microphone's signal for TDOA computation and elevation angle estimation. Our experimental results show that the proposed method achieves average error values of $0.778^{\circ}$ in azimuth and $1.296^{\circ}$ in elevation, which is similar to other methods. The method uses one energy comparison and two TDOA computations therefore, the total processing time is reduced.

Hybrid TDOA/AOA Localization Algorithm for GPS Jammers (GPS 전파교란원 위치 추정을 위한 TDOA/AOA 복합 기법 설계)

  • Lim, Deok Won;Kang, Jae Min;Heo, Moon Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.1
    • /
    • pp.101-105
    • /
    • 2014
  • For a localization system, the TDOA (Time Difference of Arrival) measurement and AOA (Angle of Arrival) measurement are often used for estimating target's positions. Although it is known that the accuracy of TDOA based localization is superior to that of AOA based one, it may have a poor vertical accuracy in bad geometrical conditions. This paper, therefore, proposes a localization algorithm in which the vertical position is estimated by AOA measurements and the horizontal one is estimated by TDOA measurement in order to achieve high 3D-location accuracy. And this algorithm is applied to a GPS jammer localization systems because it has a large value of the DOP (Dilution of Precision) when the jammer is located far away from the system. Simulation results demonstrate that the proposed hybrid TDOA/AOA location algorithm gives much higher location accuracy than TDOA or AOA only location.

Method of Master Receiver Selection Using DOP for Time Synchronization in TDOA-Based Localization (TDOA 기반 위치탐지를 위한 DOP을 이용한 시각동기화 주수신기 선택 기법)

  • Kim, Sanhae;Song, Kyuha;Kwak, Hyungyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.9
    • /
    • pp.1069-1080
    • /
    • 2016
  • TDOA(Time Difference Of Arrival)-based localization system such as the passive surveillance system performs the time synchronization between the receivers after separated installing multiple receivers to set the same clock for all receivers. And it estimates 2D(or 3D) location of the target by solving intersection of the multiple hyperbola(or hyperboloid) using TDOA. To perform time synchronization, one receiver must be set to the master, and it provide the reference data to compensate the clock of the rest of the slaves. The positioning accuracy of TDOA-based localization system is changed in accordance with the master that is selected among multiple receivers. So, the optimum receiver which is selected among multiple receivers must be set to master to get best performance in the considered deployment of receivers. In this paper, we propose a selection scheme of master receiver for time synchronization using DOP(Dilution Of Precision) which is based on location of the target and the multiple receivers. The proposed scheme has low complexity and short processing time, and it is easy to automate in the TDOA-based localization systems.