• Title/Summary/Keyword: TDC control

Search Result 85, Processing Time 0.024 seconds

A Study on Combustion and Emission Characteristics in Compression Ignition CRDI Diesel Engine (직접분사식 압축점화 디젤엔진의 연소 및 배기특성에 관한 연구)

  • Kim, Gi-Bok;Choi, Il-Dong;Ha, Ji-Hoon;Kim, Chi-Won;Yoon, Chang-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.4
    • /
    • pp.234-244
    • /
    • 2014
  • Recently it has been focused that the automobile engine has developed in a strong upward tendency for the use of the high viscosity and poorer quality fuels in achieving the high performance, fuel economy, and emission reduction. Therefore it is not easy to solve the problems between low specific fuel consumption and exhaust emission control at motor cars. In this study, it is designed and used the engine test bed which is installed with turbocharger and intercooler. In addition to equipped using CRDI by controlling injection timing with mapping modulator, it has been tested and analyzed the engine performance, combustion characteristics, and exhaust emission as operating parameters, and they were engine speeds(rpm), injection timing(bTDC), and engine load(%). From the result of an experimental analysis, peak cylinder pressure and the rate of pressure rise were increased, and the location of it was closer toward top dead center according to the increasing of engine speed and load, and with advancing injection timing. The combustion characteristics are effected by fuel injection timing due to be enhanced the mass burned fraction. Using the engine dynamometer for analyzing the engine performance, the engine torque and power have been enhanced according to advancing the fuel injection timing. In analyzing of exhaust emission, there has been a trade-off between PM and NOx with increasing of engine speed and load, and with advanced injection timing. The experimental data are shown that the formation of NOx has increased and PM, vice versa.

ANALYSIS AND OPTIMIZATION of INJECTION TIMING for AN ADVANCED COMPRESSED AIR ENGINE KIT

  • Kumar, Akshay;Kumar, Vasu;Gupta, Dhruv;Kumar, Naveen
    • International journal of advanced smart convergence
    • /
    • v.4 no.1
    • /
    • pp.54-63
    • /
    • 2015
  • Increasing air pollution levels and the global oil crisis has become a major hindrance in the growth of our automobile sector. Traditional Internal Combustion engines running on non-renewable fuels are proving to be the major culprit for the harmful effects on environment. With few modifications and also with assistance of few additional components current small SI engines can be modified into a pneumatic engine (commonly known as Compressed Air Engines) without much technical complications where the working fluid is compressed air. The working principle is very basic as adiabatic expansion of the compressed air takes place inside the cylinder pushing the piston downwards creating enough MEP to run the crank shaft at decent RPM. With the assistance of new research and development on pneumatic engines can explore the potential of pneumatic engines as a viable option over IC engines. The paper deals with analysis on RPM variation with corresponding compressed air injection at different crank angles from TDC keeping constant injection time period. Similarly RPM variation can also be observed at different injection pressures with similar injection angle variation. A setup employing a combination of magnetic switch (reed switch), magnets and solenoid valve is used in order to injection timing control. A conclusive data is obtained after detailed analysis of RPM variation that can be employed in newly modified pneumatic engines in order to enhance the running performance. With a number of benefits offered by pneumatic engine over IC engines such as no emissions, better efficiency, low running cost, light weight accompanied by optimized injection conditions can cause a significant development in pneumatic engines without any major alteration.

Knock Characteristic Analysis of Gasoline and LPG Homogeneous Charge Compression Ignition Engine (가솔린과 LPG 예혼합 압축 착화 엔진의 노킹 특성)

  • Yeom, Ki-Tae;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.54-62
    • /
    • 2007
  • The knock characteristics in an engine were investigated under homogeneous charge compression ignition (HCCI) operation. Liquefied petroleum gas (LPG)and gasoline were used as fuels and injected at the intake port using port fuel injection equipment. Di-methyl ether (DME) was used as an ignition promoter and was injected directly into the cylinder near compression top dead center (TDC). A commercial variable valve timing device was used to control the volumetric efficiency and the amount of internal residual gas. Different intake valve timingsand fuel injection amounts were tested to verify the knock characteristics of the HCCI engine. The ringing intensity (RI) was used to define the intensity of knock according to the operating conditions. The RI of the LPG HCCI engine was lower than that of the gasoline HCCI engine at every experimental condition. The indicated mean effective pressure (IMEP) dropped when the RI was over 0.5 MW/m2and the maximum combustion pressure was over 6.5MPa. There was no significant relationship between RI and fuel type. The RI can be predicted by the crank angle degree (CAD) at 50 CA. Carbon monoxide (CO) and hydrocarbon (HC) emissions were minimized at high RI conditions. The shortest burn duration under low RI was effective in achieving low HC and CO emissions.

Implement of Knocking diagnostic algorithm and design of OBD-II Diagnostic system S/W on common-rail engine (커먼레일 엔진에서 노킹 진단 알고리즘 구현 및 OBD-II 진단기 S/W 설계 방안)

  • Kim, Hwa-Seon;Jang, Seong-Jin;Nam, Jae-Hyun;Jang, Jong-Yug
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.11
    • /
    • pp.2446-2452
    • /
    • 2012
  • In order to meet the recently enhanced emission standards at home and abroad, it is necessary to develop the CRDI ECU control algorithm that users can adjust fuel injection timing and amount in response to their needs. Therefore, this study developed the simulator for knocking analysis that enables knocking discrimination and engine balance correction applicable to the ECU exclusive to the industrial CRDI engine. The purpose of this study is to provide the driver-oriented diagnostic service that enable drivers to diagnose vehicles directly by developing diagnostic devices for vehicles with ths use of the results of the developed simulator for knocing analysis according to the OBD-II standards. For this purpose, this study aims to improve the fuel efficiency of vehicles by proposing the S/W design method of the OBD-II diagnosis device that can provide real-time communcations with the use of wired system and bluetooth module as a wireless system to send and recevice automobile fault diagnosis signal and sensor output signal, and to suggest an improvement for engine efficiency by minimizing the generation of harmful exhaust gas.

Investigation on Diesel Injection Characteristics of Natural Gas-Diesel Dual Fuel Engine for Stable Combustion and Efficiency Improvement Under 50% Load Condition (천연가스-디젤 혼소 엔진의 50% 부하 조건에서 제동효율 및 연소안정성 개선을 위한 디젤 분무 특성 평가)

  • Oh, Sechul;Oh, Junho;Jang, Hyungjun;Lee, Jeongwoo;Lee, Seokhwan;Lee, Sunyoup;Kim, Changgi
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.3
    • /
    • pp.45-53
    • /
    • 2022
  • In order to improve the emission of diesel engines, natural gas-diesel dual fuel combustion compression ignition engines are in the spotlight. In particular, a reactivity controlled compression ignition (RCCI) combustion strategy is investigated comprehensively due to its possibility to improve both efficiency and emissions. With advanced diesel direct injection timing earlier than TDC, it achieves spontaneous reaction with overall lean mixture from a homogeneous mixture in the entire cylinder area, reducing nitrogen oxides (NOx) and particulate matter (PM) and improving braking heat efficiency at the same time. However, there is a disadvantage in that the amount of incomplete combustion increases in a low load region with a relatively small amount of fuel-air. To solve this, sensitive control according to the diesel injection timing and fuel ratio is required. In this study, experiments were conducted to improve efficiency and exhaust emissions of the natural gas-diesel dual fuel engine at low load, and evaluate combustion stability according to the diesel injection timing at the operation point for power generation. A 6 L-class commercial diesel engine was used for the experiment which was conducted under a 50% load range (~50 kW) at 1,800 rpm. Two injectors with different spray patterns were applied to the experiment, and the fraction of natural gas and diesel injection timing were selected as main parameters. Based on the experimental results, it was confirmed that the brake thermal efficiency increased by up to 1.3%p in the modified injector with the narrow-angle injection added. In addition, the spray pattern of the modified injector was suitable for premixed combustion, increasing operable range in consideration of combustion instability, torque reduction, and emissions level under Tier-V level (0.4 g/kWh for NOx).