• Title/Summary/Keyword: TDC(Top dead center)

검색결과 20건 처리시간 0.022초

Implementation of Power Line MODEM for TDC Pulse Detection of SEPA

  • Yang, Hyun-Suk;Lee, Byung-Yong;Kim, Yoon-Sik;Seo, Dong-Hoan;Kim, Sung-Hwan;Kwon, Yeong-Gwal;Lee, Sung-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권3호
    • /
    • pp.430-436
    • /
    • 2008
  • Recently, there are many cases to use a ship's engine performance analyzer(SEPA) to measure pressure in cylinder and top dead center(TDC) of piston of engine, and analyze its performance such as fuel injection time and horsepower as well as wear of piston ring. But, SEPA needs TDC pulses($T(1){\sim}T(n)$) generated when pistons of engine are located to the TDC position ($TDC(1){\sim}TDC(n)$), these pulses are gathered from sensors connected to gear wheel of the propeller shaft in the remote distance from the measurement point. Therefore, operators need a long wire cable(WRC) to TDC detecting sensor to get these pulses, but this method is a very uncomfortable and expensive in case of installation, and it might decrease user's purchase desire. In this paper, we design and fabricate a small and inexpensive MODEM cable(M0C) so that it may be available to transmit TDC pulse generated from sensor in propeller shaft through existing power line. We also verify the facts that this MOC can be applied to SEPA and the effectiveness of the system through the experiments.

마그네틱 픽업 방식의 CPS 신호 해석 회로에 관한 연구 (A Study of the Circuit for CPS Signal Using Magnetic Pickup)

  • 주용완;조봉수;백광렬
    • 제어로봇시스템학회논문지
    • /
    • 제17권1호
    • /
    • pp.1-5
    • /
    • 2011
  • The basic signals for electronic engine control are velocity and degree of the engine cam shaft. The CPS sensor used for this signal and magnetic pick-up type CPS sensor is more popular. It is very important thing analyze this signal correctly. If there are some mistakes at the analysis, like a noise, The engine do not working at the best status, it will generate some noise, emit exhaust fumes and waste more gases. In general way to analysis this signal, you use zero-level detector circuit and in order to reduce the error you must use another sensor like a TDC sensor. In this paper, We proposed the analysis method using electronics circuits for magnetic pick-up type CPS sensor. We designed Comparison level detector circuit, Differential circuit and Full-rectifier circuit for detected the Long tooth and Short tooth level correctly without another sensor. We expected it is useful for more reliable engine control.

선박용 발전기 엔진 출력 측정 장치의 TDC 오차 발생 원인 (Causes of Top Dead Center Error in Marine Generator Engine Power-Measuring Device)

  • 이지웅;정균식;이원주
    • 해양환경안전학회지
    • /
    • 제26권4호
    • /
    • pp.429-435
    • /
    • 2020
  • 엔진의 출력을 측정하기 위한 방법은 실린더의 연소압력을 측정하여 지시마력을 구하는 방법과 축토크를 측정하여 축마력을 구하는 방법이 있다. 축토크로 실린더의 상태를 확인하기에는 한계가 있으며, 엔진의 성능 측정과 실린더의 연소 해석을 위해서는 실린더의 연소 상태를 확인할 수 있는 연소압력을 측정하는 방법이 가장 정확하다. 측정에 있어 연소압력은 크랭크샤프트 회전 각도에 따른 실린더 압력이 도시되어야하기 때문에 정확한 실린더 앵글각도를 정확히 인지시키는 작업이 가장 중요하다. 본 연구에서는 실제 운항선의 발전기 엔진을 대상으로 실린더 압력을 측정하기 위하여 크랭크 앵글 센서로 엔코더를 사용하였고 엔코더에서 인지하는 TDC(TDCencoder)와 압축압력에 의한 TDC(TDCcomp) 간의 실측을 통하여 차이가 발생하는 원인에 대하여 고찰하였다. 또한 0 %, 25 %, 50 %와 60 % 부하에서 측정된 실린더의 TDCcomp와 TDCencoder 간의 차이를 통하여 크랭크샤프트의 제작에 의한 영향, 부하증가에 따른 엔진과 발전기 사이의 커플링 영향에 대한 결과를 고찰하였으며, 발전기의 부하가 증가할수록 최대 3°CA까지 TDC의 오차가 발생함을 확인하였다.

선박용 디젤엔진의 출력산정을 위한 TDC 위치보정에 관한 연구 (Correction of TDC Position for Engine Output Measuring in Marine Diesel Engines)

  • 정균식;최준영;정은석;최재성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권4호
    • /
    • pp.459-466
    • /
    • 2012
  • 엔진성능 분석을 위해서는 기관의 정확한 출력이 기본적으로 중요한 인자이며, 또한 오늘날 엔진의 연소압력 분석 장치는 엔진의 연구와 개발, 환경규제 및 엔진의 유지관리를 위해서 필수 장비로 대두 되고 있다. 디젤엔진에서 성능 분석의 정확도는 TDC의 위치를 정확하게 찾는 것이 무엇보다 중요하다. 따라서 본 연구에서는 2행정 대형저속의 선박엔진에서 TDC의 위치에 영향을 주는 인자들의 영향을 조사 분석하고, 정확한 TDC 위치를 파악하기 위한 새로운 방법을 제시하고자 한다. 전보에서 정확한 엔진 출력은 TDC위치의 정확도에 의해서 결정이 되며, '시간기준 계측' 방법 보다 '각도기준 계측' 방법이 정확도 측면에서 우수함을 밝혔다. 또한 압축압력의 피크는 열손실 및 Blow by에 의한 가스누설로 실제 TDC와 차이가 발생하는 손실각(Loss of angle)을 확인하였으며, 이를 이용하여 정확한 출력을 측정할 수 있는 '향상된 시간기준' 방법을 고안하였다. 이 방법은 선박의 주기관의 손실각만 보정함으로써 엔코더가 설치된 실린더의 '각도기준 계측' 방법과 같은 결과를 얻을 수 있음을 확인하였다. 따라서 본 연구에서는 정확한 엔진출력의 새로운 계측 방법을 제시하고, 그 결과에 대한 신뢰성을 검증 하고자 한다.

피스톤 링과 실린더 라이너에서의 마찰저감 기술개발 (Development of Friction Reduction Method between Piston Ring and Cylinder Liner)

  • 김완호;차금환;김대은;임윤철
    • Tribology and Lubricants
    • /
    • 제14권4호
    • /
    • pp.37-43
    • /
    • 1998
  • The friction loss between piston rings and cylinder liner is due to the tension of the piston rings. Lubricant is usually supplied to reduce the friction. However, the sliding speed of the piston varies during the reciprocating cycle and is very low near TDC(Top Dead Center)/BDC(Bottom Dead Center), where the hydrodynamic lubrication cannot be sustained. Since the lubrication regime is shifted from the hydrodynamic to the boundary lubrication near TDC/BDC, wear particles are easily generated so that the friction loss becomes bigger and bigger due to the plowing effect of wear particles. In this study, for the purpose of reducing the friction loss, an undulated surface is adopted to the cylinder liner to trap wear particles. The friction force variations, which are measured by strain gaged, show that the concept of undulated surface is one of the promising methods to effectively reduce the friction between piston rings and cylinder liner.

웹기반 선박엔진 성능분석용 압력모니터링 시스템 구현 (Implementation of pressure monitoring system(PMS) for ship's engine performance analysis(SEPA) based on the web)

  • 양현숙;권혁주;이성근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권7호
    • /
    • pp.929-935
    • /
    • 2014
  • 본 논문에서는 선내 제어실 및 Web에서 고속의 선박엔진성능분석용 압력 모니터링이 가능한 시스템을 구현하고자 한다. 이 시스템은 압력센서, 다채널 A/D 변환기가 내장된 감시모듈, TCP/IP 및 무선 인터넷 통신시스템으로 구성되고, 저가형이면서 국산화 개발에 목표를 둔 것이다. 기존 국산 제품은 가장 먼저 폭발하는 실린더의 피스톤이 상사점(TDC, Top dead center)에 도달하는 순간에 그 실린더의 압력을 측정하고, 이어서 실린더 개수만큼 등분된 회전 각도가 지난 시점마다 차례대로 다음 실린더의 압력을 수동으로 측정하는 방식이고, 제안된 방식은 각 엔진마다 압력센서를 설치하고 이를 감시모듈에서 실시간으로 계측한 후 통신에 의해 현장 제어실 PC나 Web 상에서 실시간 모니터링이 되도록 구현한다. 제안한 방식을 이용하면 최초에 폭발하는 TDC 점뿐만 아니라 나머지 실린더의 TDC 점을 실시간으로 정확히 계측하는 것이 가능하고, 각 TDC에 동기 되는 각 실린더 내의 압력 측정이 가능하여 선박엔진성능분석의 정밀도를 높일 수 있다. 또한, 실린더의 최대압력(Pmax)과 TDC 편차 및 연소상태와 같은 엔진의 다양한 진단에 사용될 수 있다.

4밸브기관의 압축상사점 부근의 난류특성에 관한 수치해석적 연구 (A Numerical Study on the Turbulent Flow Characteristics Near Compression TDC is Four-Valve-Per-Cylinder Engine)

  • 김철수;최영돈
    • 한국자동차공학회논문집
    • /
    • 제1권1호
    • /
    • pp.1-13
    • /
    • 1993
  • The three-dimensional numerical analysis for in-cylinder flow of four-valve engine without intake port has been successfully computed. These computations have been performed using technique of the general coordinate transformation based on the finite-volume method and body-fitted non-orthogenal grids using staggered control volume and covariant variable as dependent one. Computations are started at intake valve opening and are carried through top-dead-center of compression. A k-$\varepsilon$model is used to represent turbulent transport of momentum. The principal study is the evolution of interaction between mean flow and turbulence and of the role of swirl and tumble in generating near TDC turbulence. Results for three different inlet flow configuration are presented. From these results, complex flow pattern may be effective for promoting combustion in spark-ignition engines and kinetic energy of mean flow near TDC is well converted into turbulent kinetic energy.

  • PDF

가솔린엔진의 부하(負荷)에 따른 실린더 벽면 온도특성(溫度特性)에 관(關)한 연구(硏究) (An Experimental Study on the Cylinder Wall Temperature Characteristics for Load Variations in a Gasoline Engine)

  • 권기린;고장권;홍성찬
    • 동력기계공학회지
    • /
    • 제3권1호
    • /
    • pp.16-22
    • /
    • 1999
  • The purpose of this study is to prevent the stick, scuffing, scratch between piston and cylinder, is to contribute the piston design such as piston profile, clearance by calculating reaction force by over-lap of piston skirt, as measuring the temperature distributions of cylinder wall. The experiment has been peformed to obtain data during actual engine operation. Temperature gradient in peripheral and axial distributions of cylinder wall according to torque and speed of engine were measured by use of an 800cc class gasoline engine. The results obtained are summarized as follows ; 1) The temperature of cylinder wall at TDC was about $50{\sim}75^{\circ}C$ higher than temperature of cooling water. 2) The rear side temperature of top dead center was $141^{\circ}C$(1/4 load) in axial distribution, whereas the rear side of midway position temperature was $98^{\circ}C$. 3) The temperature of cylinder wall increased in according to rising temperature of cooling water. 4) The thrust side temperature of cylinder wall was about $15^{\circ}C$ in all load test. 5) The rear side temperature of top dead center was $159^{\circ}C$ (1/2 load) in peripheral distribution, it was about $39^{\circ}C$ higher than thrust side temperature.

  • PDF

포지션별 농구용 휠체어가 추진동작에 미치는 효과 (The effects of three basketball wheelchairs on propulsion movement)

  • 임비오;유연주;서정석
    • 한국운동역학회지
    • /
    • 제12권2호
    • /
    • pp.215-227
    • /
    • 2002
  • 본 연구의 목적은 정상인 휠체어 농구 선수 8명을 대상으로 추진 및 방향전환 동작의 소요시간 측정 및 운동학적 분석을 통하여 포지션별 농구용 휠체어가 추진동작에 미치는 효과를 규명하는데 있다. 포지션별(포드, 센타, 가드) 휠체어의 한 주기(핸드림 접촉에서 다음 핸드림 접촉까지)를 2차원 DLT 방식을 이용하여 구하고자 하는 변인을 산출하였다. 가드용 휠체어는 직선 구간 및 방향전환 구간 모두에서 가장 빠르게 나타났으며, 센타용 휠체어는 방향전환 구간에서 제일 느린 것으로 나타났다. 이동 속도가 가장 빠른 가드용 휠체어는 손이 TDC(Top Dead Center)에 더 가깝게 접촉하며, 더 오랫동안 핸드림에 힘을 가해서 추진하며, 분당 추진빈도는 가장 적은 것으로 나타났다. 반면에 센타용 휠체어는 손이 TDC에서 가장 멀리 접촉하며, 가장 짧은 범위에서 핸드림에 힘을 가해서 추진하는 것으로 나타났다. 가드용 휠체어는 핸드림 접촉시 팔꿈치를 가장 많이 굽히고 몸통을 가장 많이 세우며, 센타용 휠체어는 핸드림 접촉시 팔꿈치를 가장 많이 펴고 몸통을 많이 굽히며 핸드림 이지시 가드용 휠체어에 비해 팔꿈치를 많이 펴는 것으로 나타났다. 휠체어 추진시 좌석의 높이가 가장 낮은 가드용 휠체어는 포드용 및 센타용 휠체어보다 팔꿈치 및 몸통각의 범위가 가장 큰 것으로 나타났다. 몸통 최대 각속도에서 가드용 휠체어는 다른 휠체어와 비교해서 가장 큰 값을 나타냈다.

디젤 엔진 연료 분사 타이밍 구간에서의 흡기 포트 스월비 1D 컴퓨터 시뮬레이션 (1D Computer Simulation of Diesel Engine Intake Port Swirl Ratios Considering the Fuel Injection Timing Range)

  • 오대산;이충훈
    • 한국분무공학회지
    • /
    • 제26권2호
    • /
    • pp.81-87
    • /
    • 2021
  • This study was performed to calculate the swirl ratio of a diesel engine intake port by a 1D computer simulation under actual engine operating conditions. The swirl ratio of the intake port was simulated according to the change of the engine speed during the operation of the motoring without fuel injection. The swirl ratio of the intake port was simulated according to changes in the crank angle during the four-cycle operation of intake, compression, expansion and exhaust. The swirl ratio represented by the three regions of the piston, center and squish was simulated. Among the three regions, the piston-region swirl ratio is important for effective air-fuel mixing in the engine cylinder. In particular, it was confirmed during the simulation that the piston swirl ratio before and after the compression top dead center (TDC) point when fuel is injected in the DI diesel engine can have a significant effect on the mixing of air and fuel. It was desirable to set the average piston swirl ratio over a crank angle section before and after compression TDC as the representative swirl ratio of the cylinder head intake port according to the change of the engine speed.