Objectives : This study was aimed to examine the acute toxicity assessment of two new algicides, thiazolidinediones derivatives (TD53 and TD49), which were synthesized to selectively control red tide, to the marine ecosystem. Methods : The assessment employed by a new method using Ulva pertusa Kjellman which has been recently accepted as a standard method of ISO. The toxicity was assessed by calculating the $EC_{50}$ (Effective Concentration of 50%), NOEC (No Observed Effect Concentration) and PNEC (Predicted No Effect Concentration) using acute toxicity data obtained from exposure experiments. $EC_{50}$ value of TD49 and TD53 was examined by 96-hrs exposure together with Solutol as a TD49 dispersing agent and DMSO as a TD53 solvent. Results : $EC_{50}$ value of TD53 was $1.65\;{\mu}M$. From the results, values of NOEC and PNEC were calculated to be $0.63\;{\mu}M$ and 1.65 nM, respectively. DMSO under the range of $0{\sim}10\;{\mu}M$, which is same solvent concentration used in examining TD53, showed no toxic effect. $EC_{50}$ value of TD49 was $0.18\;{\mu}M$ and that of Solutol was $1.70\;{\mu}M$. NOEC and PNEC of TD49 were $0.08\;{\mu}M$ and 0.18 nM, respectively and those for Solutol were $1.25\;{\mu}M$ and 1.25 nM, respectively. Conclusions : From the values of NOEC, PNEC of TD53 and TD49, TD49 showed 9 times stronger toxicity than TD53. On the other hand, DMSO showed no toxicity on the Ulva pertusa Kjellman, but Solutol was found to be a considerable toxicity by itself.
강화학습에서 temporal-credit 할당 문제 즉, 에이전트가 현재 상태에서 어떤 행동을 선택하여 상태전이를 하였을 때 에이전트가 선택한 행동에 대해 어떻게 보상(reward)할 것인가는 강화학습에서 중요한 과제라 할 수 있다. 본 논문에서는 조합최적화(hard combinational optimization) 문제를 해결하기 위한 새로운 메타 휴리스틱(meta heuristic) 방법으로, greedy search뿐만 아니라 긍정적 반응의 탐색을 사용한 모집단에 근거한 접근법으로 Traveling Salesman Problem(TSP)를 풀기 위해 제안된 Ant Colony System(ACS) Algorithms에 Q-학습을 적용한 기존의 Ant-Q 학습방범을 살펴보고 이 학습 기법에 다양화 전략을 통한 상태전이와 TD-오류를 적용한 학습방법인 Ant-TD 강화학습 방법을 제안한다. 제안한 강화학습은 기존의 ACS, Ant-Q학습보다 최적해에 더 빠르게 수렴할 수 있음을 실험을 통해 알 수 있었다.
A novel polymeric tablet of tinidazole (TD) was formulated to treat Helicobacter pylori and Giardia lambria more efficiently with reduced hepatotoxicity by controlling the release of TD after oral administration. TD tablets containing various concentrations of either xanthan gum (XG, viscosity enhancer) and/or polycarbophil (PC, mucoadhesive) were prepared by the wet granulation method. In vitro release of TD into pH 2.0 and pH 5.0 buffer solutions was observed at 37°C by using an USP dissolution tester and an UV (313 nm) spectrophotometer. In vivo absorption of TD tablets was investigated in rabbits by measuring the blood concentration of TD after oral administration using a HPLC. Compared to a commercial TD tablet, in vitro release of TD in both pH 2.0 and pH 5.0 buffer solutions significantly decreased as the concentration: of XG or PC in the tablet increased up to 30%. However, when XG and PC was added in combination, TD was completely released in a pH 5.0 buffer solution within 8 hours, whereas the release of TD in pH 2.0 buffer solution significantly decreased. TD in a commercial tablet was rapidly absorbed after oral administration in rabbits. After oral administration of the polymeric tablets that contain both XG and PC, plasma concentration of TD dramatically decreased. Since the oral absorption of TD significantly decreased by the addition of XG and PC in the tablets while TD completely released in a pH 5.0 buffer solution, it was speculated that more TD was retained in the gastrointestinal tract. Thus, it was possible to control the release of TD by changing the content of XG and/or PC in the tablet, thereby manipulating the release rate and the gastrointestinal retention of TD after oral administration in rabbits.
최근 무선통신 기술이 급속도로 발전하면서 스마트 센서를 이용한 사물통신 (Machine-to-Machine, M2M)과 사물인터넷 (Internet of Things, IoT) 등의 신규 서비스들이 창출되고 있다. 본 논문에서는 사용자들이 스마트폰이나 태블릿PC 등의 사용자 장비 (User Equipment, UE)를 이용하여 사물인터넷 디바이스 (IoT Device, IoTD)를 제어하는 환경에서, 스몰셀 기지국(Small-cell Access Point, SAP)을 도입하여 IoTD를 개인화하는 방법을 제안한다. 이를 위해, 먼저 UE, IoTD, 그리고 SAP 로 구성되는 시스템 아키텍처를 소개한다. 이후, IoTD의 프로파일 등록 절차와 댁내 외 UE의 IoTD를 제어 절차로 구성되는 IoTD 개인화 방법을 제안한다. 마지막으로 시뮬레이션을 통해 제안하는 방법의 시스템 성능을 분석하였고, 전형적인 방법보다 제안하는 방법이 패킷 지연시간, 패킷 손실률, 그리고 정규화된 수율 측면에서 성능이 향상됨을 알 수 있었다.
본 논문에서는 TD(temporal differences) 기법을 사용한 localized QoS 라우팅 기법을 제안하였다. 이 기법은 이웃노드로부터 얻어지는 성공 기댓값을 통해 라우팅 정책을 결정하는 기법이다. 이에 본 논문에서는 라우팅 성공 기댓값을 기반으로 한 다양한 탐색기법으로 경로 선택 시 라우팅 성능을 비교 평가하였으며, 특히 Exploration Bonus를 적용한 탐색 기법이 다른 탐색 기법에 비해 더욱 우수한 성능을 보여주고 있는데, 이는 다른 탐색 기법에 비해 네트워크 상황에 더 적응적으로 경로를 선택할 수 있기 때문이다.
This paper presents that TD method is applied to the human adaptive devices for smart home with context awareness (or recognition) technique. For smart home, the very important problem is how the appliances (or devices) can adapt to user. Since there are many humans to manage home appliances (or devices), managing the appliances automatically is difficult. Moreover, making the users be satisfied by the automatically managed devices is much more difficult. In order to do so, we can use several methods, fuzzy controller, neural network, reinforcement learning, etc. Though the some methods could be used, in this case (in dynamic environment), reinforcement learning is appropriate. Among some reinforcement learning methods, we select the Temporal Difference learning method as a core algorithm for adapting the devices to user. Since this paper assumes the environment is a smart home, we simply explained about the context awareness. Also, we treated with the TD method briefly and implement an example by VC++. Thereafter, we dealt with how the devices can be applied to this problem.
강화학습(reinforcement learning)은 동적 환경과 시행-착오를 통해 상호 작용하면서 학습을 수행한다. 그러므로 동적 환경에서 TD-학습과 TD(${\lambda}$)-학습과 같은 강화학습 방법들은 전통적인 통계적 학습 방법보다 더 빠르게 학습을 할 수 있다. 그러나 제안된 대부분의 강화학습 알고리즘들은 학습을 수행하는 에이전트(agent)가 목표 상태에 도달하였을 때만 강화 값(reinforcement value)이 주어지기 때문에 최적 해에 매우 늦게 수렴한다. 본 논문에서는 미로 환경(maze environment)에서 최단 경로를 빠르게 찾을 수 있는 강화학습 방법(GORLS : Goal-Directed Reinforcement Learning System)을 제안하였다. GDRLS 미로 환경에서 최단 경로가 될 수 있는 후보 상태들을 선택한다. 그리고 나서 최단 경로를 탐색하기 위해 후보 상태들을 학습한다. 실험을 통해, GDRLS는 미로 환경에서 TD-학습과 TD(${\lambda}$)-학습보다 더 빠르게 최단 경로를 탐색할 수 있음을 알 수 있다.
This paper presents that the lossy or amplification property of the Finite Difference-Time Domain(FD-TD) method based on the leap-frog scheme is theoretically verified by using a plane wave analysis. The basic algorithm of the FD-TD method is introduced in order to help understanding the analysis procedure. Since our analysis is formulated by the Von Neumann's approach, the stability inequality is also produced as an another outcome.
In order to learn in dynamic environments, reinforcement learning algorithms like Q-learning, TD(0)-learning, TD(λ)-learning have been proposed. however, most of them have a drawback of very slow learning because the reinforcement value is given when they reach their goal state. In this thesis, we have proposed a reinforcement learning method that can approximate fast to the goal state in maze environments. The proposed reinforcement learning method is separated into global learning and local learning, and then it executes learning. Global learning is a learning that uses the replacing eligibility trace method to search the goal state. In local learning, it propagates the goal state value that has been searched through global learning to neighboring sates, and then searches goal state in neighboring states. we can show through experiments that the reinforcement learning method proposed in this thesis can find out an optimal solution faster than other reinforcement learning methods like Q-learning, TD(o)learning and TD(λ)-learning.
Genetic parameters for first lactation milk production based on test day (TD) records of 56319 Iranian Holstein cows from 655 herds that first calved between 1991 and 2001 were estimated with restricted maximum likelihood method under an Animal model. Traits analyzed were milk yield and milk fat percentage. Heritability for TD records were highest in second half of the lactation, ranging from 0.11 to 0.19 for milk yield and 0.038 to 0.094 for milk fat percentage respectively. Estimates for lactation records for these traits were 0.24 and 0.26 respectively. Genetic correlations between individual TD records were high for consecutive TD records (>0.9) and decreased as the interval between tests increased. Estimates of genetic correlations of TD yield with corresponding lactation yield were highest (0.78 to 0.86) for mid-lactation (TD3 to TD8). Phenotypic correlations were lower than corresponding genetic correlations, but both followed the same pattern. For milk fat percentage no clear pattern was found. Results of this study suggested that TD yields especially in mid-lactation may be used for genetic evaluation instead of 305-day yield.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.