• Title/Summary/Keyword: TCP fairness

Search Result 132, Processing Time 0.025 seconds

Study of Selective Cell Drop Scheme using Fuzzy Logic on TCP/IP (TCP/IP에서 퍼지 논리를 사용한 선택적 셀 제거 방식에 관한 연구)

  • 조미령;양성현;이상훈;강준길
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.1
    • /
    • pp.95-104
    • /
    • 2002
  • This paper presents some studies on the Internet TCP/IP(Transmission Control Protocol-Internet Protocol) traffic over ATM(Asynchronous Transfer Mode) UBR(Unspecified Bit Rate) and ABR(Available Bit Rate) classes of service. Fuzzy logic prediction has been used to improve the efficiency and fairness of traffic throughput. For TCP/IP over UBR, a novel fuzzy logic based cell dropping scheme is presented. This is referred to as fuzzy logic selective cell drop (FSCD). A key feature of the scheme is its ability to accept or drop a new incoming packet dynamically based on the predicted future buffer condition in the switch. This is achieved by using fuzzy logic prediction for the production of a drop factor. Packet dropping decision is then based on this drop factor and a predefined threshold value. Simulation results show that the proposed scheme significantly improves TCP/IP efficiency and fairness. To study TCP/IP over ABR, we applied the fuzzy logic ABR service buffer management scheme from our previous work to both approximate and exact fair rate computation ER(Explicit cell Rate) switch algorithms. We then compared the performance of the fuzzy logic control with conventional schemes. Simulation results show that on zero TCP packet loss, the fuzzy logic control scheme achieves maximum efficiency and perfect fairness with a smaller buffer size. When mixed with VBR traffic, the fuzzy logic control scheme achieves higher efficiency with lower cell loss.

  • PDF

A New Scheduling Algorithm for Performance Improvement of GFR Service (GFR 서비스의 성능 향상을 위한 새로운 스케줄링 알고리즘)

  • Cho, Hae-Seong;Kim, Kwan-Woong;Bae, Sung-Hwan
    • The KIPS Transactions:PartC
    • /
    • v.10C no.1
    • /
    • pp.45-50
    • /
    • 2003
  • Guaranteed Frame Rate (GFR) service category is one of the most recent ATM service categories. The GFR specification was recently finalized by the ATM Forum and is expected to become an important service category which can efficiently support TCP/IP traffic in ATM network. In GFR switch implementation, it is important to guarantee MCR (minimum cell rate) and improve fairness. In this paper, we propose a new scheduling algorithm for the GFR service. Proposed algorithm provides priority to VC (virtual circuit)s and high Priority given to a VC which has fewer untagged cells in buffer. High priority VCs are serviced before low priority VCs. Proposed algorithm can guarantee MCR and improve fair sharing of the remaining bandwidth between GFR VCs. From computer simulation results, we demonstrate the proposed scheduling algorithm provide much better performance in TCP goodput and fairness than previous schemes.

Leaky Bucket Based Buffer Management Algorithm to Guarantee MCR and Improve Fairness in ATM-GFR (ATM-GFR에서 최소 전송율 보장 및 공평성 향상을 위한 Leaky Bucket 기반의 버퍼 관리 알고리즘)

  • 김권웅;김변곤;전병실
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.12
    • /
    • pp.520-528
    • /
    • 2002
  • The ATM Forum recently introduced the Guaranteed Frame Rate(GFR) service category GFR service has been designed to support classical best effort traffic such as TCP/IP based traffic. The GFR service not only guarantees a minimum throughput, but also supports fair distribution of available bandwidth to completing VCs. In this paper, we proposed a new buffer management algorithm based on leaky bucket to provide minimum cell rate guarantee and improve fairness. The proposed algorithm reduces complexity and processing overhead of leaky-bucket algorithm to implement easily.

History-Aware RED for Relieving the Bandwidth Monopoly of a Station Employing Multiple Parallel TCP flows (다수의 병렬 TCP Flow를 가진 스테이션에 의한 대역폭 독점을 감소시키는 History-Aware RED)

  • Jun, Kyung-Koo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11B
    • /
    • pp.1254-1260
    • /
    • 2009
  • This paper proposes history-aware random early detection (HRED), a modified version of RED, to lessen bandwidth monopoly by a few of stations employing multiple parallel TCP flows. Stations running peer-to-peer file sharing applications such as BitTorrent use multiple TCP flows. If those stations share a link with other stations with only a small number of TCP flows, the stations occupy most of link bandwidth leading to undesirable bandwidth monopoly. HRED like RED determines whether to drop incoming packets according to probability which changes based on queue length. However it adjusts the drop probability based on bandwidth occupying ratio of stations, thus able to impose harder drop penalty on monopoly stations. The results of simulations assuming various scenarios show that HRED is at least 60% more effective than RED in supporting the bandwidth fairness among stations and at least 4% in utilization.

Improving the TCP Retransmission Timer Adjustment Mechanism for Constrained IoT Networks

  • Chansook Lim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.29-35
    • /
    • 2024
  • TCP is considered as one of the major candidate transport protocols even for constrained IoT networks..In our previous work, we investigated the congestion control mechanism of the uIP TCP. Since the uIP TCP sets the window size to one segment by default, managing the retransmission timer is the primary approach to congestion control. However, the original uIP TCP sets the retransmission timer based on the fixed RTO, it performs poorly when a radio duty cycling mechanism is enabled and the hidden terminal problem is severe. In our previous work, we proposed a TCP retransmission timer adjustment scheme for uIP TCP which adopts the notion of weak RTT estimation of CoCoA, exponential backoffs with variable limits, and dithering. Although our previous work showed that the proposed retransmission timer adjustment scheme can improve performance, we observe that the scheme often causes a node to set the retransmission timer for an excessively too long time period. In this work, we show that slightly modifying the dithering mechanism of the previous scheme is effective for improving TCP fairness.

A Buffer Management Scheme for Throughput and Fairness Improvement in ATM Networks (ATM 망에서 수율 및 공평성 향상을 위한 효율적 버퍼관리 기법)

  • 김남희
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.5
    • /
    • pp.842-848
    • /
    • 2003
  • The Guaranteed Frame Rate(GFR) service has been designed to accomodate non-real-time applications, such as TCP/IP based traffic in ATM networks. One of the important factors is buffer management for guaranteeing QoS in GFR service. In this paper, we propose a buffer management scheme which can improve the fairness and the throughput through the traffic control in GFR service. For the evaluation of the proposed scheme, we compare proposed scheme with the existing scheme in the fairness and the throughput. Simulation results show that proposed scheme can improve the fairness and throughput than the existing scheme.

  • PDF

A Fair Multicast Congestion Control Mechanism based on the Designated Server (지정된 서버를 이용한 공정한 멀티캐스트 혼잡제어 메커니즘)

  • Oh, Jae-Hwan;Kum, Jung-Hyun;Chung, Kwang-Sue;Kim, Hwa-Sung
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.3
    • /
    • pp.233-241
    • /
    • 2002
  • In this paper, we proposed a new mechanism that solves the fairness problem between unicast traffic using the TCP and multicast traffic using the UDP, and satisfies the requirement of various receivers fairly in the Internet. The proposed mechanism decentralizes the load of blanket transmission rate control from sender to designated server, and uses the method that talc designated server intercepts the sender's data and controls the transmission rate suitable for it's local network. Therefore, the proposed mechanism not only provides multicast service by accurate estimation of the network status of each receiver, but also realizes both the inter-session fairness and the intra-session fairness problem.

A Study of Cell delay for ABR service in ATM network (ATM 네트워크에서 ABR 서비스의 셀 지연 방식에 관한 연구)

  • 이상훈;조미령;김봉수
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.9
    • /
    • pp.1163-1174
    • /
    • 2001
  • A general goal of the ATM(Asynchronous Transfer Mode) network is to support connections across various networks. ABR service using EPRCA(Enhanced Proportional Rate Control Algorithm) switch controls traffics in ATM network. EPRCA switch, traffic control method uses variation of the ACR(Allowed Cell Rate) to enhance the utilization of the link bandwidth. However, in ABR(Available Bit Rate) service, different treatments are offered according to different RTTs(Round Trip Times) of connections. To improve the above unfairness, this paper presents ABR DELAY mechanism, in which three reference parameters for cell delay are defined, and reflect on the messages of RM(Resource Management) cells. To evaluate our mechanism, we compare the fairness among TCP connections between ABR DELAY mechanism and ABR RRM mechanism. And also we execute simulations on a simple ATM network model where six TCP connections and a background traffic with different RTTs share the bandwidth of a bottleneck link. The simulation results, based on TCP goodput and efficiency, clearly show that ABR DELAY mechanism improves the fairness among TCP connections.

  • PDF

TCP Fairness Improvement Scheme using Adaptive Contention Window in Wireless Mesh Networks (무선 메쉬 네트워크에서 적응적 경쟁 윈도우를 이용한 TCP Fairness 개선 방안)

  • Jang, In Sik;Min, Seok Hong;Kim, Bong Gyu;Choi, Hyung Suk;Lee, Jong Sung;Kim, Byung Chul;Lee, Jae Yong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.322-331
    • /
    • 2013
  • Wireless Mesh Networks(WMNs) is generally composed of radio nodes in the mesh topology. WMNs consists of mesh client, mesh router and gateway connected to a wired network. Each client and router relay messages to the gateway for communication. WMNs is widely used recently in many areas can provide extended coverage based on multi-hop communication and ubiquitous communication at any time and any location. However the competition and collision between each node to transmit data is inevitable when the same channel is used for transmission. The transmission opportunities and the throughput of nodes located far from gateway decrease more if the communication channel is accessed based on competitive CSMA/CA scheme using DCF(Distributed Coordination Function) provided by IEEE 802.11 MAC. In this paper, we improve the performance of the TCP fairness and throughput of the nodes with more than 2 hops by applying various algorithms for controlling contention window values. Also, we evaluate the performance using ns-2 simulator, According to the results, proposed scheme can enhance the fairness characteristic of each node irrespective of data to the gateway.