• Title/Summary/Keyword: TCP Throughput

Search Result 245, Processing Time 0.021 seconds

Enhanced TCP Congestion Control Mechanism for Networks with Large Bandwidth Delay Product (대역폭과 지연의 곱이 큰 네트워크를 위한 개선된 TCP 혼잡제어 메카니즘)

  • Park Tae-Joon;Lee Jae-Yong;Kim Byung-Chul
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.3 s.345
    • /
    • pp.126-134
    • /
    • 2006
  • Traditional TCP implementations have the under-utilization problem in large bandwidth delay product networks especially during the startup phase. In this paper, we propose a delay-based congestion control(DCC) mechanism to solve the problem. DCC is subdivided into linear and exponential growth phases. When there is no queueing delay, the congestion window grows exponentially during the congestion avoidance period. Otherwise, it maintains linear increase of congestion window similar to the legacy TCP congestion avoidance algorithm. The exponential increase phase such as the slow-start period in the legacy TCP can cause serious performance degradation by packet losses in case the buffer size is insufficient for the bandwidth-delay product, even though there is sufficient bandwidth. Thus, the DCC uses the RTT(Round Trip Time) status and the estimated queue size to prevent packet losses due to excessive transmission during the exponential growth phase. The simulation results show that the DCC algorithm significantly improves the TCP startup time and the throughput performance of TCP in large bandwidth delay product networks.

TCP Performance improvement over Asymmetric Bandwidth Satellite Network using ACK filtering and Packet scheduling (비대칭 대역폭 위성망에서의 TCP 성능 향상을 위한 단말국 ACK 필터링 및 패킷 스케줄링 기법)

  • Kim, YongSin;Choi, Hoon;Ahn, Jaeyoung;Kim, Younghan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.4
    • /
    • pp.1-8
    • /
    • 2000
  • A defect of decrease in TCP throughput can be investigated in asymmetric environment of different uplink and downlink bandwidths. Under two-way TCP traffic, the total link utilization is decreased by the successive injection of data packets in buffer. To solve these problems, terminal ACK filtering and packet scheduling mechanisms are introduced in this paper. ACK filtering eliminates the buffered ACK packets and transmits recent ACK packets in the uplink with limited bandwidth. Packet scheduling is the method of preventing 'clustering' and 'ack compression' states which are generated in the two-way TCP traffic. The guarantee of the data traffic in reverse TCP connection and the high throughput in forward TCP connection are investigated by simulation.

  • PDF

Cross-Layer Analysis of Wireless TCP/ARQ Systems over Correlated Channels

  • Wu Yi;Niu Zhisheng;Zheng Junli
    • Journal of Communications and Networks
    • /
    • v.7 no.1
    • /
    • pp.45-53
    • /
    • 2005
  • In this paper, we present a cross-layer analysis of wireless TCP systems over correlated channels. The effects of error correlation on the behavior of link retransmission strategy and the end-to-end throughput of TCP layer are investigated. Based on the cross-layer analysis, an efficient refinement of link layer protocol is proposed by consciously utilizing the information of channel correlations, which leads to the performance improvement of wireless TCP systems.

A study on the Improvement of TCP over ATM (TCP over ATM의 성능 개선에 관한 연구)

  • Lee, Jin-Woo;Park, Ki-Tae;Kim, Jin-Tae;Kim, Nae-Jin;Park, In-Kap
    • Journal of IKEEE
    • /
    • v.2 no.1 s.2
    • /
    • pp.68-75
    • /
    • 1998
  • The Asynchronous Transfer Mode(ATM) networks are being adopted as backbones over various parts of Internet. Also, TCP is one of the most widespread transport protocols, nowadays. It can be used with ATM. But, TCP shows poor end-to-end performance on ATM networks. Effective throughput of TCP over ATM can be quite low when cells are dropped at the congested ATM switch. The low throughput is due to wasted bandwidth as congested link transmits cells from corrupted packets. This paper examines the behavior of TCP over ATM-UBR using EPD switch in a broadband environment. With a threshold close to the buffer size, the buffer can be used more efficiently, but more drops and retransmission occurs. If the threshold is much less than buffer size, efficient is not good, but few drops can happen. Therefore, decision of the threshold is important.

  • PDF

Traffic Performance Analysis using Asymmetry Wireless Link Network in Transmission Rate Controlled Channels (전송률 제어 채널에서 비대칭 무선 링크 네트워크를 이용한 트래픽 성능 분석)

  • Jeong, You-Sun;Youn, Young-Ji;Shin, Bo-Kyoung;Kim, Hye-Min;Park, Dong-Suk;Ra, Sang-Dong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.8
    • /
    • pp.1434-1440
    • /
    • 2008
  • Performance of TCP/IP is studied on the wireless network using flow control and congestion control mechanism based on transmission rate. We discuss the elimination or the reduction of various phenomena of burst by flow controlling on transmission rate and verify that there are TCP ACK compression promblems on the queue by burst reaction while executing transmission rate controlled channels. Analyzing periodic burst reaction on the queue of source IP, the maximum value of queue is expected, which represents the applible expectation of throughput reduce and shows the improvement of performance by the reduce of throughput due to hi-directional traffic.

End-to-End Method for Improving TCP Performance for MANET (MANET용 TCP의 성능 개선을 위한 단-대-단 방법)

  • Yim Jaegeol
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.2 s.302
    • /
    • pp.1-10
    • /
    • 2005
  • The current implementation of TCP for the Internet is not efficient when used for Mobile Ad hoc Networks (MANENTs). This is because TCP assumes that all packet losses are caused by congestion, whereas transmission errors are a main reason for packet losses in wireless networks. To remedy this situation and increase performance, we propose an end-to-end method of using propagation delays and the differences between propagation delays to distinguish the causes for packet losses. The proposed method has two characteristics: Firstly, it is energy-efficient because this solution is only initiated when a packet loss is detected. Secondly, our approach considers only the one way propagation delay and is more accurate in determining causes for packet losses than existing methods which consider round trip time. Petri net models of the proposed TCP and of the standard TCP have been built and simulations have been performed on them. Our simulation results show that the proposed approach increases throughput and reduces propagation delay compared with standard TCP.

A Receiver-driven TCP Flow Control for Memory Constrained Mobile Receiver (제한된 메모리의 모바일 수신자를 고려한 수신자 기반 TCP 흐름 제어)

  • 이종민;차호정
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.1
    • /
    • pp.91-100
    • /
    • 2004
  • This paper presents a receiver-driven TCP flow control mechanism, which is adaptive to the wireless condition, for memory constrained mobile receiver. A receiver-driven TCP flow control is, in general, achieved by adjusting the size of advertised window at the receiver. The proposed method constantly measures at the receiver both the available wireless bandwidth and the packet round-trip time. Depending on the measured values, the receiver adjusts appropriately the size of advertised window. Constrained by the adjusted window which reflects the current state of the wireless network, the sender achieves an improved TCP throughput as well as the reduced round-trip packet delay. Its implementation only affects the protocol stack at the receiver and hence neither the sender nor the router are required to be modified. The mechanism has been implemented in real environments. The experimental results show that in CDMA2000 1x networks the TCP throughput of the proposed method has improved about 5 times over the conventional method when the receiver's buffer size is limited to 2896 bytes. Also, with 64Kbytes of buffer site, the packet round-trip time of the proposed method has been reduced in half, compared the case with the conventional method.

Performance Evaluation of TCP in Hybrid Satellite-Terrestrial Relay Networks (하이브리드 위성-지상 중계기 네트워크에서 TCP 성능 분석)

  • Lee, Kyu-Hwan;Jang, Dong-Hyuk;Lee, Sung-Jae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.1
    • /
    • pp.121-127
    • /
    • 2017
  • In the land mobile satellite (LMS) communication, a hybrid satellite-terrestrial relay networks (HSTRNs) using a maximal ratio combining (MRC) scheme are widely used to enhance the quality of signal from a satellite. In this paper, we derive equations for the TCP throughput and the spectral efficiency in the HSTRN and analyze results of the performance evaluation for TCP in various environments. In the simulation results, it is shown that increasing the number of terrestrial relays can enhance the TCP throughput and spectral efficiency thanks to the MRC scheme. However, the usage of the static number of terrestrial relays considering no channel states would cause the overhead. Furthermore, it has a limitation to enhance the network performance by only MRC scheme in HSTRN because the TCP performance is sensitive to the packet los rate. Therefore, we discuss the possible solutions that can additionally enhance the network performance and reduce the overhead.

An E2E Mobility Management and TCP Flow Control Scheme in Vertical Handover Environments (버티컬 핸드오버 환경에서 종단간 이동성 관리 및 TCP 흐름 제어기법)

  • Seo Ki-nam;Lim Jae-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.6B
    • /
    • pp.387-395
    • /
    • 2005
  • In this paper, we propose an end-to-end mobility management and TCP flow control scheme which considers different link characteristics for vertical handover environments. The end-to-end mobility management is performed by using SIP protocol. When a mobile node moves to a new network, it informs its movement of the correspondent node by sending SIP INFO message containing a new IP address which will be used in the new network. And then the corresponding node encapsulates all packets with the new IP address and sends them to the mobile node. in general, RTT of WLAN is shorter than RTT of cdma2000. when the MN moves from WLAN network to cdma2000 network, TCP retransmission timeout will be occurred in spite of non congestion situations. Thus, TCP congestion window size will be decreased and TCP throughput will be also decreased. To prevent this phenomenon, we propose a method using probe packets after handover to estimate a link delay of the new network. We also propose a method using bandwidth ratio of each network to update RTT. It is shown through NS-2 simulations that the proposed schemes can have better performance than the previous works.

Improving TCP Performance by Limiting Congestion Window in Fixed Bandwidth Networks (고정대역 네트워크에서 혼잡윈도우 제한에 의한 TCP 성능개선)

  • Park, Tae-Joon;Lee, Jae-Yong;Kim, Byung-Chul
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.12
    • /
    • pp.149-158
    • /
    • 2005
  • This paper proposes a congestion avoidance algorithm which provides stable throughput and transmission rate regardless of buffer size by limiting the TCP congestion window in fixed bandwidth networks. Additive Increase, Multiplicative Decrease (AIMD) is the most commonly used congestion control algorithm. But, the AIMD-based TCP congestion control method causes unnecessary packet losses and retransmissions from the congestion window increment for available bandwidth verification when used in fixed bandwidth networks. In addition, the saw tooth variation of TCP throughput is inappropriate to be adopted for the applications that require low bandwidth variation. We present an algorithm in which congestion window can be limited under appropriate circumstances to avoid congestion losses while still addressing fairness issues. The maximum congestion window is determined from delay information to avoid queueing at the bottleneck node, hence stabilizes the throughput and the transmission rate of the connection without buffer and window control process. Simulations have performed to verify compatibility, steady state throughput, steady state packet loss count, and the variance of congestion window. The proposed algorithm can be easily adopted to the sender and is easy to deploy avoiding changes in network routers and user programs. The proposed algorithm can be applied to enhance the performance of the high-speed access network which is one of the fixed bandwidth networks.