• Title/Summary/Keyword: TCM(Tool Condition Monitoring)

Search Result 5, Processing Time 0.028 seconds

Tool condition monitoring using parameters of beta distribution in gear shaving process (기어 세이빙 공정에서 베타 확률 분포를 이용한 공구 상태 검출)

  • Choi, Deok-Ki;Kim, Seong-Jun;Oh, Young-Tak
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1069-1074
    • /
    • 2008
  • Tool condition monitoring (TCM) is crucial for improvement of productivity in manufacturing process. However, TCM techniques have not been applied to monitor tool failure in an industrial gear shaving application. Therefore, this work studied a statistical TCM method for monitoring gear shaving tool condition. The method modeled the shaving process using beta probability distribution in order to extract the effective features. Modeling includes rectifying for converting a bi-modal distribution into a unimodal distribution, estimating parameters of beta probability distribution based on method of moments. The usefulness of features obtained from the proposed method was evaluated and discussed.

  • PDF

Neural Netwotk Analysis of Acoustic Emission Signals for Drill Wear Monitoring

  • Prasopchaichana, Kritsada;Kwon, Oh-Yang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.3
    • /
    • pp.254-262
    • /
    • 2008
  • The objective of the proposed study is to produce a tool-condition monitoring (TCM) strategy that will lead to a more efficient and economical drilling tool usage. Drill-wear monitoring is an important attribute in the automatic cutting processes as it can help preventing damages of the tools and workpieces and optimizing the tool usage. This study presents the architectures of a multi-layer feed-forward neural network with back-propagation training algorithm for the monitoring of drill wear. The input features to the neural networks were extracted from the AE signals using the wavelet transform analysis. Training and testing were performed under a moderate range of cutting conditions in the dry drilling of steel plates. The results indicated that the extracted input features from AE signals to the supervised neural networks were effective for drill wear monitoring and the output of the neural networks could be utilized for the tool life management planning.

Feature Analysis Based on Beta Distribution Model for Shaving Tool Condition Monitoring (세이빙공구 상태 감시를 위한 베타분포모델에 기반한 특징 해석)

  • Choe, Deok-Ki;Kim, Seong-Jun;Oh, Young-Tak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.1
    • /
    • pp.11-18
    • /
    • 2010
  • Tool condition monitoring (TCM) is crucial for improvement of productivity in manufacturing process. However, TCM techniques have not been applied to monitor tool failure in an industrial gear shaving application. Therefore, this work studied a statistical TCM method for monitoring gear shaving tool condition. The method modeled the vibration signal of the shaving process using beta probability distribution in order to extract the effective features for TCM. Modeling includes rectifying for converting a bi-modal distribution into a unimodal distribution, estimating the parameters of beta probability distribution based on method of moments. The performance of features obtained from the proposed method was evaluated and discussed.

Sensor Fusion and Neural Network Analysis for Drill-Wear Monitoring (센서퓨젼 기반의 인공신경망을 이용한 드릴 마모 모니터링)

  • Prasopchaichana, Kritsada;Kwon, Oh-Yang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.77-85
    • /
    • 2008
  • The objective of the study is to construct a sensor fusion system for tool-condition monitoring (TCM) that will lead to a more efficient and economical drill usage. Drill-wear monitoring has an important attribute in the automatic machining processes as it can help preventing the damage of tools and workpieces, and optimizing the drill usage. In this study, we present the architectures of a multi-layer feed-forward neural network with Levenberg-Marquardt training algorithm based on sensor fusion for the monitoring of drill-wear condition. The input features to the neural networks were extracted from AE, vibration and current signals using the wavelet packet transform (WPT) analysis. Training and testing were performed at a moderate range of cutting conditions in the dry drilling of steel plates. The results show good performance in drill- wear monitoring by the proposed method of sensor fusion and neural network analysis.