• Title/Summary/Keyword: TBM 터널

Search Result 352, Processing Time 0.019 seconds

A manual for the revised TBM tunnel specification (개정 TBM 터널 표준시방서 해설 연구)

  • Sagong, Myung;Jung, Chi Kwang;Moon, Joon Bai;Kim, Jeayoung;Yun, Do Sik;Yu, Myeong Han
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.4
    • /
    • pp.415-428
    • /
    • 2015
  • With increase of the extension of long tunnels and urban tunnelling, demands on the new tunnelling technologies are raised. Currently, drilling and blasting tunnel construction method is mostly used, however, because of sever blast vibration for some occasions, complaints from local residents and rock damages are inevitable. Accordingly, TBM tunnelling is more efficient and effective for such conditions. Nevertheless, tunnel construction costs of TBM cannot compete that of the drill and blasting method in Korea. To overcome such limitations, various TBM equipments and construction technologies are required. In addition, continuous revision of the design standard and specification are required. In this study, a detailed explanation regarding the revised version of TBM section in the tunnel standard specification at 2015 is shown.

Case of assembly process review and improvement for mega-diameter slurry shield TBM through the launching area (발진부지를 이용한 초대구경 이수식 쉴드TBM 조립공정 검토 및 개선 사례)

  • Park, Jinsoo;Jun, Samsu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.637-658
    • /
    • 2022
  • TBM tunnel is simple with the iterative process of excavating the ground, building a segment ring-build, and backfilling. Drill & Blast, a conventional tunnel construction method, is more complicated than the TBM tunnel and has some restrictions because it repeats the inspection, drilling, charging, blasting, ventilation, muck treatment, and installation of support materials. However, the preparation work for excavation requires time and cost based on a very detailed plan compared to Drill & Blasting, which reinforces the ground and forms a tunnel after the formation of tunnel portal. This is because the TBM equipment for excavating the target ground determines the success or failure of the construction. If the TBM, an expensive order-made equipment, is incorrectly configured at the assembly stage, it becomes difficult to excavate from the initial stage as well as the main excavation stage. When the assembled shield TBM equipment is dismantled again, and a situation of re-assembly occurs, it is difficult throughout the construction period due to economic loss as well as time. Therefore, in this study, the layout and plan of the site and the assembly process for each major part of the TBM equipment were reviewed for the assembly of slurry shield TBM to construct the largest diameter road tunnel in domestic passing through the Han River and minimized interference with other processes and the efficiency of cutter head assembly and transport were analyzed and improved to suit the site conditions.

Modern High-Power TBM with Advanced Procurement System (오늘날의 고성능 TBM과 선진 장비조달 방안)

  • Jee, Warren W.
    • Tunnel and Underground Space
    • /
    • v.23 no.3
    • /
    • pp.161-168
    • /
    • 2013
  • Recently, the application of High-Power mechanized tunnelling technology has been expended around the world. Especially, High-power Modern TBM machines are used in a successful results. Essential for the great success of this modern TBM in difficult rock conditions are based on the development of machine power, suitable better cutter developments, and also developed assesment technology regards on the extensive site investigations. OPP (Owner Procurement Process) system is a proven alternative contract delivery method that is potentially applicable to many tunnel projects. Using the OPP, the owner specifies and procures the TBMs and tunnel lining in advance of the tunnel contract procurement and provides TBM to a tunnel contractor with a goals of reducing project risks and accelerating project schedule. Depending on the blasting vibrations and noises, mechanized tunnelling will be more important particularly in city areas.

Application technique on thrust jacking pressure of shield TBM in the sharp curved tunnel alignment by model tests (축소모형실험을 통한 급곡선 터널에서의 Shield TBM 추진 압력 적용 기술에 대한 연구)

  • Kang, Si-on;Kim, Hyeob;Kim, Yong-Min;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.335-353
    • /
    • 2017
  • This paper presents the application technique on thrust jacking pressuring of shield TBM in the sharp curved tunnel alignment by model tests. Recently, the application of shield TBM method as mechanized tunnelling is increasing to prevent the vibration and noise problems, which can be occurred in the NATM in the urban area in Korea. However, it is necessary to plan the sharp curved tunnel alignment in order to avoid the building foundation and underground structures, to develop the shield TBM operation technique in the shape curved tunnel alignment. Therefore, the main operation parameters of shield TBM in the curved tunnel alignment are reviewed and analyzed based on the case study and analytical study. The results show that the operation of shield jacking force system is the most important technique in the shape curved tunnel alignment. The simplified scaled model tests are also carried out in order to examine the ground-shield TBM head behaviour. The earth pressures acting on the head of shield TBM are investigated according to two different shield jacking force systems (uniform and un-uniform pressure) and several articulation angles. The results obtained from the model tests are analysed. These results will be very useful to understand the shield TBM head interaction behaviour due to the shield jacking operation technique in the shape curved tunnel alignment, and to develop the operation technique.

Analysis on the behavior of shield TBM cable tunnel: The effect of the distance of backfill grout injection from the end of skin plate (뒷채움 주입 거리에 따른 전력구 쉴드 TBM 터널의 거동 특성 분석)

  • Cho, Won-Sub;Song, Ki-Il;Ryu, Hee-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.2
    • /
    • pp.213-224
    • /
    • 2014
  • Recently, tunnelling with TBM is getting popular for the construction of cable tunnel in urban area. Mechanized tunnelling method using shield TBM has various advantages such as minimization of ground settlement and prevention of vibration induced by blasting that should be accompanied by conventional tunnelling. In Korea, earth pressure balance (EPB) type shield TBM has been mainly used. Despite the popularity of EPB shield TBM for cable tunnel construction, study on the mechanical behavior of cable tunnel driven by shield TBM is insufficient. Especially, the effect of backfill grout injection on the behavior of cable tunnel driven by shield TBM is investigated in this study. Tunnelling with shield TBM is simulated using 3D FEM. The distance of backfill grout injection from the end of shield skin varies. Sectional forces such as axial force, shear force and bending moment are monitored. Vertical displacement at the ground surface is measured. Futhermore, the relation between volume loss and the distance of backfill grout injection from the end of skin plate is derived. Based on the stability analysis with the results obtained from the numerical analysis, the most appropriate injection distance can be obtained.

Establishment of Maintenance and Monitoring Standards for Shield and TBM Tunnels (Shield 및 TBM 터널의 유지관리계측 관리기준 설정에 관한 연구)

  • Jong-Tae Woo
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.1-12
    • /
    • 2024
  • Purpose: The objective of this study was to improve the tunnel maintenance and monitoring technology by establishing the maintenance, management, and monitoring standards for shield and TBM tunnels, which had been applied more in recent years. Method: This study comprehensively analyzed and compared the data and model simulations of Seoul Subway Lines 7 and 9 and Bundang Line, shield and TBM tunnels in South Korea, tunnels in France and Japan, and Channel Tunnel in the UK. Result: This study set maintenance and monitoring standards when there was no design estimate based on numerical analyses such as section design and section analysis regarding the maintenance and monitoring section of shield and TBM tunnels. Conclusion: It is necessary to determine safety by comprehensively considering not only each monitoring item but also the changing trend and correlation of all items and compensation of the tunnel.

Study on Risk Priority for TBM Tunnel Collapse based on Bayes Theorem through Case Study (사례분석을 통한 베이즈 정리 기반 TBM 터널 붕괴 리스크 우선순위 도출 연구)

  • Kwon, Kibeom;Kang, Minkyu;Hwang, Byeonghyun;Choi, Hangseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.785-791
    • /
    • 2023
  • Risk management is essential for preventing accidents arising from uncertainties in TBM tunnel projects, especially concerning managing the risk of TBM tunnel collapse, which can cause extensive damage from the tunnel face to the ground surface. In addition, prioritizing risks is necessary to allocate resources efficiently within time and cost constraints. Therefore, this study aimed to establish a TBM risk database through case studies of TBM accidents and determine a risk priority for TBM tunnel collapse using the Bayes theorem. The database consisted of 87 cases, dealing with three accidents and five geological sources. Applying the Bayes theorem to the database, it was found that fault zones and weak ground significantly increased the probability of tunnel collapse, while the other sources showed low correlations with collapse. Therefore, the risk priority for TBM tunnel collapse, considering geological sources, is as follows: 1) Fault zone, 2) Weak ground, 3) Mixed ground, 4) High in-situ stress, and 5) Expansive ground. In practice, the derived risk priority can serve as a valuable reference for risk management, enhancing the safety and efficiency of TBM construction. It provides guidance for developing appropriate countermeasure plans and allocating resources effectively to mitigate the risk of TBM tunnel collapse.

Development and Application of the Assessment System of TBM Tunnelling Procedure (TBM 터널 공정 분석시스템의 개발 및 적용)

  • 백승한;문현구
    • Tunnel and Underground Space
    • /
    • v.13 no.6
    • /
    • pp.455-464
    • /
    • 2003
  • Four assessment systems for planning and evaluation of TBM tunnelling are discussed, and their characteristics and input data are analyzed. Two of the systems are determined to be adequate for post-evaluation of TBM performance because the time, such as repair time, downtime, installation time and transport time, must be included for calculations. The others are adequate for pre-planning because the basic data of the systems consist of only the basic properties of rocks and rock masses, and the specification of TBM. In order to apply these assessment systems, a number of equations, graphs and charts are generally required, which seems to be very inconvenient and complicated. In this study, therefore, a user-friendly program operated on Windows system is developed, and each system can be selected by the corresponding input data. It will be possible fer tunnel engineers to select a system according to their objectives and available input data, and to apply the system to TBM tunnel project.