• 제목/요약/키워드: TBC(Thermal Barrier Coating)

검색결과 86건 처리시간 0.022초

경사화 두께를 갖는 열차폐 코팅의 열적 내구성 평가 (Evaluation of Thermal Durability for Thermal Barrier Coatings with Gradient Coating Thickness)

  • 이승수;김준성;정연길
    • 한국산학기술학회논문지
    • /
    • 제21권8호
    • /
    • pp.248-255
    • /
    • 2020
  • 경사화 두께를 갖는 열차폐 코팅의 열적 내구성과 열적 안정성에 대한 코팅층 두께의 영향을 화염 열피로 시험과 열충격 시험을 통해서 조사하였다. Bond 층과 top 층은 각각 Ni-Cr계 상용 MCrAlY 분말과 상용 이트리아 안정화 지르코니아 (YSZ) 분말을 사용하여 니켈기지의 초내열합금 모재 (GTD-111)에 대기 플라즈마 용사법 (APS)으로 코팅층을 형성하였다. 1100 ℃의 화염으로 1429회 열피로 시험 후 bond 층이 일부 산화되고 top 층과 bond 층 계면에서 열화에 의한 산화층 (TGO)이 관찰되었으나, 코팅층 부위와 관계없이 균열이나 박리현상 없는 양호한 미세구조를 나타내었다. 1100 ℃ 열충격 시험결과, 37회 열충격 테스트 후 코팅층의 얇은 부위에서 박리가 시작되어 98회 시험 후 코팅층의 50% 이상이 박리되었으며, 코팅층의 두께가 얇게 형성된 부위는 코팅층이 두껍게 형성된 부위에 비해, top 층의 박리와 함께 bond 층의 산화가 많이 진행되었으며, 코팅층 두께가 상대적으로 두껍게 형성된 부위에서 열차폐 효과의 증가로 인해 bond 층의 내산화성과 열적 안정성이 우수한 것으로 나타났다.

TBC/CoNiCrAlY 용사코팅의 열싸이클 특성 (Thermal cyclic characteristics of TBC/CoNiCrAlY thermal barrier coatings)

  • 김의현;유근봉
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2006년도 춘계 학술대회 개요집
    • /
    • pp.45-47
    • /
    • 2006
  • The rotating components in the hot sections of land-based gas turbine are exposed to severe environments during several tens thousand operation hours at above $1100^{\circ}C$ operation temperature. To protect such components from high temperature oxidation, an intermediate bond coat is applied, typical of a MCrAlY-type metal alloy. This study is concerned with the thermal cyclic behavior of thermal barrier coatings. The MCrAlY bond coatings are deposited by HVOF (High Velocity Oxygen Fuel) method on a nickel-based superalloy (GTD-111). Thermal cyclic tests at $1100^{\circ}C$ in ambient air for various periods of time were used to evaluate the thermal cyclic resistance of the TBC coating. The microstructure and morphology of as-sprayed and of thermal cycled coatings were characterized by scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD).

  • PDF

APS법에 의한 경사기능성 지르코니아 열장벽 피막의 열충격 및 고온내마모 특성에 관한 연구 (A Study in the High Temperature Wear and Thermal Shock Resistance of the Functional Gradient Thermal Barrier Coating by Air Plasma Spray with ZrO$_2$)

  • 한추철;박만호;송요승;변응선;노병호;이구현;권식철
    • 한국표면공학회지
    • /
    • 제30권4호
    • /
    • pp.272-280
    • /
    • 1997
  • The Thermal Barrier Coation(TBC) to improve the that barrier and wear resistant propenrty in high temperature ofthe aircraftength between the accumlation of the aircraft engine and the automobile engine has usually the two layer structure. One is a creamic top layer for heat insulation and the other is a metal bond layer to facilitate the bond strength between the top ceramic layer and the substrate. But, the coated layers should be peeled off because of the accumulation of the thermal stress by the differance of the thermal expantion coefficient between metal and ceramics in a hrat cyclic environment. In this study, the intermediate layer by plasm spray process was introduced to reduce the thermal stress. The powders of plasm spray coating were the Yttria Stabilized Zirconia (YSZ), the Magnesia Stabillized Zirconia(MSZ) and NiCrAlY. the intermediate layer was sprayed with the powders of the bond cast for the purpose of test were executed. The high temperature wear resistance tends to decreasnceee wear and thermal shock test were exeucuted. The high temperature were resistance of the YSZ TBC is better that of the MSZ TBC. The wearrsistance tends to decrease accoring to incresing the temperature between $400^{\circ}C$to $600^{\circ}C$. The thermal shock life of the 3 layer TBC with YSZ top casting was the most outstanding thermal shock rsisstasnce. This means that the intermediate layer should play an importnat roll to alleviate the diffrerence of the thermal expansion coef frcients between metallic layer and cermics layer.

  • PDF

NUMERICAL APPROACH TO MICROSTRUCTURAL CHARACTERIZATIONS FOR DENSE AND POROUS THERMAL BARRIER COATINGS

  • Kim, Seok-Chan;Go, Jae-Gwi;Jung, Yeon-Gil;Paik, Un-Gyu
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제15권3호
    • /
    • pp.223-231
    • /
    • 2011
  • During spray coating, especially in an air plasma spray (APS), pores, cracks, and splat boundaries are developed and those factors exert influence on thermomechanical properties such as elastic modulus, thermal conductivity, and coefficient of thermal expansion. Moreover, the thermo mechanical properties are crucial elements to determine the thermoelastic characteristics, for instance, temperature distribution, displacements, and stresses. Two types of thermal barrier coating (TBC) model, the dense and porous microstructures, are taken into account for the analysis of microstructural characterizations. $TriplexPro^{TM}$-200 system was applied to prepare TBC samples, and the METECO 204 C-NS powder is adopted for the relatively porous microstructure and METECO 204 NS powder for the dense microstructure in the top coat of TBCs. Governing partial differential equations were derived based on the thermoelastic theory and approximate estimates for the thermoelastic characteristics were obtained using a finite volume method for the governing equations.

가스터빈 블레이드 열차폐코팅의 곡률에 따른 기계적 특성 평가 (Evaluation of the Mechanical Characteristics According to the Curvature of Thermal Barrier Coating)

  • 이정민;석창성;구재민;김성혁;;;문원기
    • 대한기계학회논문집A
    • /
    • 제38권12호
    • /
    • pp.1427-1430
    • /
    • 2014
  • 열차폐 코팅은 고온 화염의 열이 블레이드의 모재에 직접 전달되는 것을 막는 역할을 하며, 세라믹 재질의 탑코팅층과 금속 모재간 결합력을 증가시켜주는 본드코팅층으로 이루어져있다. 이러한 열차폐 코팅 기술로 인하여 블레이드 표면의 온도가 화염온도에 비해 약 $100{\sim}170^{\circ}C$정도 낮아지게 된다. 이러한 열차폐 코팅은 금속모재와 코팅층의 열팽창 계수의 차이로 인해 내부 응력이 발생하게 되며, 블레이드의 형상 및 위치에 따라 발생하는 응력이 다르다. 따라서 본 논문에서는 열차폐코팅의 내구성 시험에 보편적으로 사용되는 코인형 시험편에 대하여 모재의 곡률에 따른 유한요소해석을 수행하고 열차폐 코팅에서 발생하는 내부 응력변화를 고찰하였다. 그 결과 탑코팅에 최저응력이 발생할 때의 곡률을 도출하였고 최저응력에서의 곡률과 차이가 커질수록 발생하는 응력이 커짐을 확인하였다.

Thermal Behavior Variations in Coating Thickness Using Pulse Phase Thermography

  • Ranjit, Shrestha;Chung, Yoonjae;Kim, Wontae
    • 비파괴검사학회지
    • /
    • 제36권4호
    • /
    • pp.259-265
    • /
    • 2016
  • This paper presents a study on the use of pulsed phase thermography in the measurement of thermal barrier coating thickness with a numerical simulation. A multilayer heat transfer model was ussed to analyze the surface temperature response acquired from one-sided pulsed thermal imaging. The test sample comprised four layers: the metal substrate, bond coat, thermally grown oxide and the top coat. The finite element software, ANSYS, was used to model and predict the temperature distribution in the test sample under an imposed heat flux on the exterior of the TBC. The phase image was computed with the use of the software MATLAB and Thermofit Pro using a Fourier transform. The relationship between the coating thickness and the corresponding phase angle was then established with the coating thickness being expressed as a function of the phase angle. The method is successfully applied to measure the coating thickness that varied from 0.25 mm to 1.5 mm.

1300℃급 가스터빈 1단 블레이드의 코팅분석을 이용한 열화평가 (Evaluation of the Degradation of a 1300℃-class Gas Turbine Blade by a Coating Analysis)

  • 송태훈;장성용;김범수;장중철
    • 대한금속재료학회지
    • /
    • 제48권10호
    • /
    • pp.901-906
    • /
    • 2010
  • The first stage blade of a gas turbine was operated under a severe environment which included both $1300^{\circ}C$ hot gas and thermal stress. To obtain high efficiency, a thermal barrier coating (TBC) and an internal cooling system were used to increase the firing temperature. The TBC consists of multi-layer coatings of a ceramic outer layer (top coating) and a metallic inner layer (bond coat) between the ceramic and the substrate. The top and bond coating layer respectively act as a thermal barrier against hot gas and a buffer against the thermal stress caused by the difference in the thermal expansion coefficient between the ceramic and the substrate. Particularly, the bondcoating layer improves the resistance against oxidation and corrosion. An inter-diffusion layer is generated between the bond coat and the substrate due to the exposure at a high temperature and the diffusion phenomenon. A thickness measurement result showed that the bond coat of the suction side was thicker than that of the pressure side. The thickest inter-diffusion zone was noted at SS1 (Suction Side point 1). A chemical composition analysis of the bond coat showed aluminum depletion around the inter-diffusion layer. In this study, we evaluated the properties of the bond coat and the degradation of the coating layer used on a $1300^{\circ}C$-class gas turbine blade. Moreover, the operation temperature of the blade was estimated using the Arrhenius equation and this was compared with the result of a thermal analysis.

전자빔을 이용한 물리기상증착법으로 제조된 열차폐용 4 mol% YSZ 코팅의 내열특성 (Thermal Durability of 4YSZ Thermal Barrier Coating Deposited by Electron Beam PVD)

  • 박찬영;양영환;김성원;이성민;김형태;임대순;장병국;오윤석
    • 한국분말재료학회지
    • /
    • 제20권6호
    • /
    • pp.460-466
    • /
    • 2013
  • 4 mol% Yttria-stabilized zirconia (4YSZ) coatings with $200{\mu}m$ thick are fabricated by Electron Beam Physical Vapor Deposition (EB-PVD) for thermal barrier coating (TBC). $150{\mu}m$ of NiCrAlY based bond coat is prepared by conventional APS (Air Plasma Spray) method on the NiCrCoAl alloy substrate before deposition of top coating. 4 mol% YSZ top coating shows typical tetragonal phase and columnar structure due to vapor phase deposition process. The adhesion strength of coating is measured about 40 MPa. There is no delamination or cracking of coatings after thermal cyclic fatigue and shock test at $850^{\circ}C$.

단결정 초내열합금에 적용된 열차폐코팅의 등온열화에 따른 산화물 거동분석 (Analysis of Thermal Oxide Behavior with Isothermal Degradation of TBC Systems Applied to Single Crystal Superalloy)

  • 김기근;위성욱;최재구;김담현;송현우;이정민;석창성;정의석;권석환
    • 한국안전학회지
    • /
    • 제34권4호
    • /
    • pp.1-5
    • /
    • 2019
  • In the field of combined cycle power generation, thermal barrier coating(TBC) protects the super-heat-resistant alloy, which forms the core component of the gas turbine, from high temperature exposure. As the turbine inlet temperature(TIT) increases, TBC is more important and durability performance is also important when considering maintenance cost and safety. Therefore, studies have been made on the fabrication method of TBC and super-heat-resistant alloy in order to improve the performance of the TBC. In recent years, due to excellent properties such as high temperature creep resistance and high temperature strength, turbine blade material have been replaced by a single crystal superalloy, however there is a lack of research on TBC applied to single crystal superalloy. In this study, to understand the isothermal degradation performance of the TBC applied to the single crystal superalloy, isothermal exposure test was conducted at various temperature to derive the delamination life. The growth curve of thermally grown oxide(TGO) layer was predicted to evaluate the isothermal degradation performance. Also, microstructural analysis was performed by scanning electron microscope(SEM) and energy dispersive X-ray spectroscopy (EDS) to determine the effect of mixed oxide formation on the delamination life.