• Title/Summary/Keyword: TAPC

Search Result 14, Processing Time 0.026 seconds

Electrical and Optical Properties of Phosphorescent Organic Light-Emitting Devices with a TAPC Host

  • Kim, Tae-Yong;Moon, Dae-Gyu
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.2
    • /
    • pp.84-87
    • /
    • 2011
  • We fabricated phosphorescent organic light-emitting devices with a 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) host layer. Two kinds of devices, one of ITO/TAPC/TAPC:FIrpic/TAZ/LiF/Al (device A) and one of ITO/TAPC:FIrpic/TAPC/TAZ/LiF/Al (device B), were prepared to investigate electrical and optical properties. Iridium(III) bis[(4,6-difluorophenyl)-pyridinato-N,$C^{2'}$]picolinate (FIrpic) and 3-(4-biphenylyl)-4-phenyl-5-(4-tert-butylphenyl)-1,2,4-triazole (TAZ) were used as a blue phosphorescent guest material and an electron transport layer, respectively. The TAPC layer in device B strongly contributes to whitish emission, higher driving voltage, and lower current efficiency characteristics compared with device A. The mechanisms of these electrical and optical characteristics of the devices were investigated.

High Efficiency Blue Organic Light-Emitting Diode with Three Organic Layer Structure (3-유기층 구조를 갖는 고효율 청색 유기발광소자)

  • Jang, Ji Geun;Ji, Hyun Jin;Kim, Hyun;Kim, Jae Min
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.3
    • /
    • pp.33-37
    • /
    • 2012
  • Simple and high efficiency blue organic light-emitting diodes with three organic layers of N, N'-diphenyl-N,N'-bis-[4-(phenyl-m-tolylamino)-phenyl]-biphenyl-4,4'-diamine[DNTPD]/1,1-bis-(di-4-polya-minophenyl)cyclohexane[TAPC]/electron transport material [ET-137] were fabricated and their electroluminescent characteristics were evaluated according to the TAPC thickness variation in a range of $50{\sim}300{\AA}$. Electroluminescence spectra of the devices with structure of DNTPD/TAPC/ET-137 showed all the same central emission wavelengths of 455 nm under an applied voltage of 7V, which were similar with that of the device with ET-137 only. On the other hand, the electroluminescence spectra of the device with structure of DNTPD/ET-137 without TAPC layer showed double emission peaks at the wavelengths of 455 nm and 561 nm under an applied voltage of 7V. In the devices with structure of DNTPD/TAPC/ET-137, single peak blue emission was not maintained in the device with $50{\AA}$-thick TAPC above 8V by the formation of exciplex. In the device with $300{\AA}$-thick TAPC, however, single peak blue emission was maintained until 10 V. According to the thickness increase of TAPC in the fabricated devices, the current density and luminance decreased, but the luminous efficiency and roll-off characteristics were improved.

다층 그래핀과 유기물로 구성된 계면의 전자분광학 분석을 이용한 에너지 준위 정렬 분석

  • Seo, Jae-Won;Kim, Ji-Hun;Gwon, Dae-Gyeon;Maeng, Min-Jae;Mun, Je-Hyeon;Lee, Jeong-Ik;Choe, Seong-Ryul;Kim, Taek-Yeong;Park, Yong-Seop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.163-163
    • /
    • 2013
  • 최근 들어서 유연 OLED (Organic Light-Emitting Diodes) 소자에 대한 연구가 증가하면서 전통적인 ITO 전극을 대체할 수 있는 전극물질 후보로 그래핀이 많은 주목을 받고 있다. 그 중에 CVD 방법으로 합성된 다층 그래핀(Few layer graphene, FLG)은 실제 상용화되는 소자에 응용이 될 가능성이 높아 많은 연구가 이 방향으로 진행되고 있다. 이 연구에서는 다층 그래핀과 유기물질 사이의 계면을 전자분광학 분석을 이용해 각 분자층 사이의 에너지 준위 변화에 대해 분석했다. 에너지 준위 정렬을 이용하면 각 분자층간의 정공주입 에너지장벽을 알 수 있는데 이 에너지 장벽은 소자의 효율에 직접적으로 연관되는 값이다. 정공 주입층 물질로는 TAPC 1,1- Bis[4-[N,N'-di(p-tolyl)amino]phenyl]cyclohexane (TAPC)를 사용했고, 다층 그래핀과 TAPC층 사이의 에너지 준위 정렬을 분석한 결과 다층 그래핀과 TAPC층 사이에는 ~1.4 eV의 에너지 장벽이 존재함을 확인했다. 하지만 OLED 소자로 활용하기 위해서는 이보다 더 낮은 에너지 장벽을 필요로 하기 때문에 두 물질 사이에 4,4'-bis(N-phenyl-1-naphthylamino)biphenyl (NPB), 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile (HAT-CN)을 삽입하여 에너지 장벽을 낮추기 위한 시도를 해 보았다. 그래핀과 TAPC 사이에 중간층으로 NPB를 사용했을 때의 에너지 장벽은 0.55 eV, HAT-CN을 사용했을 때는 0.4 eV로 TAPC만 사용했을 때보다 ~1 eV정도 에너지 장벽을 낮추는 효과를 보여줬다. 이 연구를 통해 다층 그래핀을 OLED 소자의 전극으로 활용할 수 있는 가능성을 볼 수 있었다.

  • PDF

Effect of Hole Transport Layer on the Electrical and Optical Characteristics of Inverted Organic Light-Emitting Diodes (정공수송층이 역구조 OLED의 전기 및 광학적 특성에 미치는 영향)

  • Se-Jin Im;Dae-Gyu Moon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.397-402
    • /
    • 2023
  • We have developed inverted green phosphorescent organic light emitting diodes (OLEDs) using 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) and bis(carbazole-9-yl)biphenyl (CBP) hole transport layers. The driving voltage, current efficiency, power efficiency, and emission characteristics of devices were investigated. While the driving voltage for the same current density was about 1~2 V lower in the devices with the TAPC layer, the maximum luminance was higher in the device with the CBP layer. The maximum current efficiency and power efficiency were 3.2 and 2.7 times higher in the device with the CBP layer, respectively. The higher efficiency in the CBP device resulted from the enhanced hole-electron balance although weak parasitic recombination takes place in the CBP hole transport layer.

Highly Efficient Green Phosphorescent Organic Light Emitting Diodes

  • Lee, Se-Hyung;Park, Hyung-Dol;Kang, Jae-Wook;Kim, Hyong-Jun;Kim, Jang-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.496-498
    • /
    • 2008
  • We have developed green phosphorescent organic light-emitting diodes (OLEDs) with high quantum efficiency. Wide-energy-gap material, 1,1-bis[(di-4-tolylamino) phenyl]cyclohexane (TAPC), with high triplet energy level was used as a hole transporting layer. Electrophosphorescent devices fabricated using TAPC as a hole-transporting layer and N,N'-dicarbazolyl-4,4'-biphenyl (CBP) doped with fac-tris(2-phenylpyridine) iridium [Ir(ppy)3] as the emitting layer showed the maximum external quantum efficiency ($\eta_{ext}$) of 19.8 %, which is much higher than the devices adopting 4,4'-bis[N-(1-naphthyl)-N-phenyl-amino]biphenyl (NPB) (${\eta}B_{ext}=14.6%$) as a hole transporting layer.

  • PDF

Performance improvements of organic solar cell using dual cathode buffer layers

  • Sachdeva, Sheenam;Kaur, Jagdish;Sharma, Kriti;Tripathi, S.K.
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1592-1599
    • /
    • 2018
  • The present study deals with the effect of dual cathode buffer layer (CBL) on the performance of bilayer of 4,4'-cyclohexylidenebis[N,N-bis(4-methylphenyl)benzenamine] (TAPC) and fullerene (C70)-based organic solar cell (OSC) with low donor concentration. OSC devices with CBLs have been fabricated using thermal vapor deposition technique. We report the use of lithium fluoride (LiF) and molybdenum trioxide ($MoO_3$) as CBLs. The insertion of LiF between C70 and aluminium (Al) electrode enhances the power conversion efficiency (PCE) of device from 1.89% to 2.47% but quenching of photogenerated excitons is observed at interface of C70 and LiF layers. Incorporation of $MoO_3$ between LiF and Al electrode further enhances PCE of device to 3.51%. This has also improved the material quality and device properties, by preventing the formation of gap states and diminishing exciton quenching.

A Study on Solution Processed Organic Ink by Nozzle Printing Technique (노즐 인쇄기법을 이용한 유기 잉크 용액 공정 연구)

  • Kim, Myong-Ki;Lee, Jungmin;Sung, Dug-Hyung;Kim, Ju-Tae;Kang, Kyungtae
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.2
    • /
    • pp.187-192
    • /
    • 2013
  • Nozzle printing technology has been usually used for adhesive patterning to encapsulate electronic devices. Film formation of functional materials by nozzle printing is a great challenge. The characteristics of nozzle printing of organic ink were investigated systematically in this paper. TAPC as an organic emitting material was used as an ink for nozzle printing experiment to form the patterns in this study. Printed pattern width was increased as the ink flow rate and the printed substrate temperature were increased. The patterns showed a coffee-ring shape.

Conversion of Total Atrio-pulmonary Connection to Total Cavo-pulmonary Connection - Review of Indications and Hemodynamic Characteristics - (심방-폐동맥 문합술 후 총 체정맥-폐동맥 문합술로의 전환 - 수술 적응증 및 혈역학적 특징의 검토 -)

  • Seo, Jung Ho;Lee, Jong Kyun;Choi, Jae Young;Sul, Jun Hee;Lee, Sung Kyu;Park, Young Whan;Cho, Bum Koo
    • Clinical and Experimental Pediatrics
    • /
    • v.45 no.2
    • /
    • pp.199-207
    • /
    • 2002
  • Purpose : Since the successful application of total atrio-pulmonary connection(TAPC) to patients with various types of physiologic single ventricles in 1971, post-operative survival rates have reached more than 90%. However some patients have been shown to present with late complications such as right atrial thrombosis, atrial fibrillation and protein losing enteropathy eventually leading to re-operation to control the long-term complications. The aim of this study is to review the results of total cavo-pulmonary connection(TCPC) in cases with late complications after TAPC. Methods : Between Jan. 1995 and Dec. 2000, 6 patients(5 males and 1 female) underwent cardiac catheterization $11{\pm}3$ months after conversion of previous TAPC to TCPC. We compared the hemodynamic and morphologic parameters before and after TCPC and also assessed the clinical outcomes. The indications for TAPC were tricuspid atresia in 4 cases and complex double-outlet right ventricle with single ventricle physiology in 2 cases. Results : There was no peri-operative mortality and all patients were clinically and hemodynamically improved at a mean follow-up of 11 months(range : 4 to 13). However, protein losing enteropathy recurred in 2 patients; this was were successfully treated with subcutaneous administration of heparin. Right atrial pressure before TCPC was $18.0{\pm}3.6mmHg$, but baffle pressure, corresponding to right atrial pressure decreased to $14.8{\pm}3.6mmHg$ after TCPC. The size of the pulmonary arteries did not regress after TCPC. Conclusion : The conversion of TAPC to TCPC improves clinical and hemodynamic status by decreasing the right atrial pressure and by providing a laminar cavo-pulmonary flow which enhances the effective pulmonary circulation in the so-called Fontan circulation.

Synthesis and Properties of Diarylamino-Substituted Linear and Dendritic Oligoquinolines for Organic Light-Emitting Diodes

  • Lee, Ho-Joon;Xin, Hao;Park, Seong-Min;Park, Seog-Il;Ahn, Taek;Park, Dong-Kyu;Jenekhe, Samson A.;Kwon, Tae-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1627-1637
    • /
    • 2012
  • The coupling reaction between 5-bromo-3-phenylbenzo[c]isoxazole and diphenylamine followed by further condensation with a mono-, di- or ter-acetyl aromatic compound in the presence of diphenyl phosphate at $145^{\circ}C$ gave a novel asymmetric diarylquinolines, oligoquinolines with diphenylamine endgroups, and a first generation quinoline dendrimer in 41-82% isolated yield. The electrochemical and photophysical properties of the oligoquinolines were characterized by cyclic voltammograms (CVs) and spectroscopy. All the quinolines emit bright sky blue light due to charge transfer from quinoline group to diphenly amine with very high quantum efficiency (> 90%). Organic light-emitting diodes (OLEDs) were fabricated using these quinolines as emitting materials. Among different device architectures explored, OLEDs with a structure of ITO/PEDOT (40 nm)/TAPC (15 nm)/D-A quinoline (40 nm)/TPBI (30 nm)/LiF (1 nm)/Al using TAPC as an electron blocking layer and TPBI as a hole blocking layer gave the best performance. A high external quantum efficiency in the range of 1.2-2.3% were achieved in all the quinolines with the best performance in BBQA(5). Our results indicate diarylamino-substituted oligoquinoline and dendrimer are promising materials for OLEDs applications.

Fabrication and Characterization of Red OLED on the Plastic Substrate (플라스틱 기판상에 적색 OLED 제작과 특성 연구)

  • Jeong, Jin-Cheol;Kim, Hyeong-Seok;Kim, Won-Ki;Jang, Ji-Geun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.4
    • /
    • pp.15-19
    • /
    • 2009
  • A high efficient organic red light emitting device with structure of DNTPD/TAPC/$Bebq_2$ :[$(pq)_2Ir(acac)$, SFC-411]/SFC-137 was fabricated on the plastic substrate, which can be applied in the fields of flexible display and illumination. In the device structure, N,N'-diphenyl-N,N'-bis-[4-(phenyl-m-tolylamino)-phenyl]-biphenyl-4,4'-diamine[DNTPD] as a hole injection layer and 1,1-bis-(di-4-tolylaminophenyl) cyclohexane [TAPC] as a hole transport were used. Bis(10-hydroxybenzo[h]quinolinato) beryllium complex [$Bebq_2$] was used as a light emitting host material. The host material, $Bebq_2$ was doubly doped with volume ratio of 7% iridium(III)bis-(2-phenylquinoline)acetylacetonate[$(pq)_2$Ir(acac)] and 3% SFC-411[red phosphor dye coded by the proprietary company]. And then, SFC-137 was used as an electron transport layer. The luminous intensity and current efficiency of the fabricated device were $22,780\;cd/m^2$ at 9V and 17.3 cd/A under $10,000\;cd/m^2$, respectively. The maximum current efficiency of the device was 22.4cd/A under $580\;cd/m^2$.

  • PDF