• Title/Summary/Keyword: TADF

Search Result 5, Processing Time 0.025 seconds

The Patent Analysis of Thermally Activated Delayed Fluorescence Materials (열 활성 지연 형광(TADF) 재료의 특허 분석)

  • Jo, Dae Seong;Sung, Min Jae;Kim, Min Ho;Choi, Seung Chul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.105-111
    • /
    • 2019
  • The TADF (Thermally Activated Delayed Fluorescence)-based OLED patents were analyzed and 4410 of patents were selected at the first step. And 975 patents were screened at second step. Finally, 39 key patents were selected. Patent qualitative analysis was performed in these patents to find which of the four property (lifetime, efficiency, color purity, driving voltage) of TADF was improved. Also, the variation of the hosts and dopants in patented TADF material were surveyed and their combination was analyzed. According to the analysis of the variation and the combination, some of TADF compounds were used as an assistant dopant to transfer energy. In addition, it tended to transfer energy by forming exciplex that shows TADF characteristics. These were similar to the mechanism of the introduced hyper fluorescence and could solve the inherent TADF problems. Finally, patent citation network was illustrated to visualize the patent citations and citations relationship of the major applicants in the current TADF-based OLED technology. The leading patent applicant organization was revealed as Idemitsu Kosan, Semiconductor Energy Laboratory, UDC, Princeton University, Merck and Nippon Steel & Sumikin Chemical, which had lots of reference patents 559, 524, 477, 310, 258, and 167, respectively.

Research Trends of Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes (OLED용 지연형광 소재의 연구 동향)

  • Lee, Ju Young
    • Ceramist
    • /
    • v.22 no.3
    • /
    • pp.218-229
    • /
    • 2019
  • The development of highly efficient thermally activated delayed fluorescence (TADF) materials is an active area of recent research in organic light emitting diodes (OLEDs) since the first report by Chihaya Adachi in 2011. Traditional fluorescent materials can harvest only singlet excitons, leading to the theoretically highest external quantum efficiency (EQE) of 5% with considering about 20% light out-coupling efficiency in the device. On the other hand, TADF materials can harvest both singlet and triplet excitons through reverse intersystem crossing (RISC) from triplet to singlet excited states. It could provide 100% internal quantum efficiencies (IQE), resulting in comparable high EQE to traditional rare-metal complexes (phosphorescent materials). Thanks to a lot of efforts in this field, many highly efficient TADF materials have been developed. This review focused on recent molecular design concept and optoelectronic properties of TADF materials for high efficiency and long lifetime OLED application.

Thermally activated delayed fluorescence (TADF) from $Sn^{4+}$-porphyrin complexes and their application to organic light emitting diodes - novel pathway for high efficiency electroluminescence

  • Endo, Ayataka;Ogasawara, Mai;Takahashi, Atsushi;Kato, Yoshimine;Adachi, Chihaya
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1411-1413
    • /
    • 2008
  • We developed $Sn^{4+}$-porphyrin complexes that show thermally activated delayed fluorescence (TADF). TADF intensities increased with an increase of temperature because of an acceleration of the reverse intersystem crossing from triplet to singlet excited states by heat activation. TADF component provides a novel pathway for high efficiency OLEDs.

  • PDF

Theoretical Study for Thermally Activated Delayed Fluorescence (TADF) Property in Organic Light-Emitting Diode (OLED) Candidates (유기발광소재(OLED) 후보물질의 지연형광(TADF) 성질에 대한 이론적 연구)

  • Seo, Hyun-il;Jeong, Hyeon Jin;Yoon, Byung Jin;Kim, Seung-Joon
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.3
    • /
    • pp.151-159
    • /
    • 2019
  • The TADF properties for carbazol-dicyanobenzene, carbazol-diphenyl sulfone, carbazol-benzonitrile derivatives as OLED candidate materials are theoretically investigated using density functional theory (DFT) with $6-31G^{**}$, cc-pVDZ, and cc-pVTZ basis sets. The optimized geometries, harmonic vibrational frequencies, and HOMO-LUMO energy separations are predicted at the B3LYP/$6-31G^{**}$ level of theory. The harmonic vibrational frequencies of the molecules considered in this study show all real numbers implying true minima. The time dependent density functional theory (TD-DFT) calculations have been also applied to investigate the absorption and emission wavelength (${\lambda}_{max}$), energy differences (${\Delta}E_{ST}$) between excited singlet ($S_1$) and triplet ($T_1$) states of candidate materials.

Investigation of degradation mechanism of phosphorescent and thermally activated delayed fluorescent organic light-emitting diodes through doping concentration dependence of lifetime

  • Song, Wook;Kim, Taekyung;Lee, Jun Yeob;Lee, Yoonkyoo;Jeong, Hyein
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.350-354
    • /
    • 2018
  • Lifetime study of blue phosphorescent and thermally activated delayed fluorescent organic light-emitting diodes was carried out to understand the dominant degradation process during electrical operation of the devices. Doping concentration dependence of the phosphorescent and thermally activated delayed fluorescent organic light-emitting diodes was studied, which demonstrated long lifetime at low doping concentration in the phosphorescent devices and at high doping concentration in the thermally activated delayed fluorescent devices. Detailed mechanism study of the two devices described that triplet-triplet annihilation is the main degradation process of phosphorescent organic light-emitting diodes, whereas triplet-polaron annihilation is the key degradation factor of the thermally activated delayed fluorescent devices.