• Title/Summary/Keyword: T2영상

Search Result 1,507, Processing Time 0.028 seconds

The Effect of Number of Echoes and Random Noise on T2 Relaxography : Development of 8-Echo CPMG (에코의 개수와 임의 잡음이 T2 이완영상의 구성에 미치는 영향연구 : 8에코 CPMG영상화 펄스열의 개발)

  • 정은기
    • Investigative Magnetic Resonance Imaging
    • /
    • v.2 no.1
    • /
    • pp.67-72
    • /
    • 1998
  • The mapping of the spin-spin relaxation time T2 in pixel-by-pixel was suggested as a quantitative diagnostic tool in medicine. although the CPMG pulse sequence has been known to be the best pulse sequence for T2 measurement in physics NMR, the supplied pulse sequence by the manufacture of MRI system was able to obtain the maximum of 4 CPMG images. Eight or more images with different echo time TEs are required to construct a reliable T2 map, so that two or more acquisitions were required, which easily took more than 10 minutes. 4-echo CPMG imaging pulse sequence was modified to generate the maximum of 8 MR images with evenly spaced echo time TEs. In human MR imaging, since patients tend to move at least several pixels between the different acquisitions, 8-echo CPMG imaging sequence reduces the acquisition time and may remove any mis-regitration of each pixels signal for the fitting of T2. The resultant T2 maps using the theoretically simulated images and using the MR images of the human brain suggested that 8 echo CPMG sequence with short echo spacing such as 17-20 msec can give the reliable T2 map.

  • PDF

Prostate MR and Pathology Image Fusion through Image Correction and Multi-stage Registration (영상보정 및 다단계 정합을 통한 전립선 MR 영상과 병리 영상간 융합)

  • Jung, Ju-Lip;Jo, Hyun-Hee;Hong, Helen
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.9
    • /
    • pp.700-704
    • /
    • 2009
  • In this paper, we propose a method for combining MR image with histopathology image of the prostate using image correction and multi-stage registration. Our method consists of four steps. First, the intensity of prostate bleeding area on T2-weighted MR image is substituted for that on T1-weighted MR image. And two or four tissue sections of the prostate in histopathology image are combined to produce a single prostate image by manual stitching. Second, rigid registration is performed to find the affine transformations that to optimize mutual information between MR and histopathology images. Third, the result of affine registration is deformed by the TPS warping. Finally, aligned images are visualized by the intensity intermixing. Experimental results show that the prostate tumor lesion can be properly located and clearly visualized within MR images for tissue characterization comparison and that the registration error between T2-weighted MR and histopathology image was 0.0815mm.

Dependency of Generator Performance on T1 and T2 weights of the Input MR Images in developing a CycleGan based CT image generator from MR images (CycleGan 딥러닝기반 인공CT영상 생성성능에 대한 입력 MR영상의 T1 및 T2 가중방식의 영향)

  • Samuel Lee;Jonghun Jeong;Jinyoung Kim;Yeon Soo Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.1
    • /
    • pp.37-44
    • /
    • 2024
  • Even though MR can reveal excellent soft-tissue contrast and functional information, CT is also required for electron density information for accurate dose calculation in Radiotherapy. For the fusion of MRI and CT images in RT treatment planning workflow, patients are normally scanned on both MRI and CT imaging modalities. Recently deep-learning-based generations of CT images from MR images became possible owing to machine learning technology. This eliminated CT scanning work. This study implemented a CycleGan deep-learning-based CT image generation from MR images. Three CT generators whose learning is based on T1- , T2- , or T1-&T2-weighted MR images were created, respectively. We found that the T1-weighted MR image-based generator can generate better than other CT generators when T1-weighted MR images are input. In contrast, a T2-weighted MR image-based generator can generate better than other CT generators do when T2-weighted MR images are input. The results say that the CT generator from MR images is just outside the practical clinics and the specific weight MR image-based machine-learning generator can generate better CT images than other sequence MR image-based generators do.

Correction of Receiver Gain using Noise′s Standard Deviation for Reconstruction of T$_1$/T$_2$ Maps (T$_1$/T$_2$ maps 의 재구성을 위해 잡음의 표준편차를 이용한 수신 증폭률 보정)

  • 김미나;김성은;신승애;정은기
    • Progress in Medical Physics
    • /
    • v.10 no.3
    • /
    • pp.125-131
    • /
    • 1999
  • T$_1$/T$_2$ weighted images are being used to give the characteristic contrast among the various tissues and the norma;/abnormal tissues. Abnormalities in tissues, in general, accompany the biochemical changes and eventually structural ones in which results in the change in T$_1$ and T$_2$ relaxation times of water protons. It has been suggested that the mapping of T$_1$/T$_2$ values may serve as a possible tool for the quantitative evaluation of the degree of abnormality. On reconstructing T$_1$/T$_2$ maps(or any other MR parametric map), only corresponding variables are to be varied, such as TE for T$_2$, TI or TR for T$_1$ and b-factor for diffusion images. But often the receiver gain is taken for the optimal usage of A/D converter, so that the set of the image data has different receiver gain. It must be corrected before any attempt to reconstruct the maps. Here we developed method of correcting receiver gain variation effect, using the standard deviation of noise on individual image. The resultant T$_1$ and T$_2$ values were very comparable to the other reported values.

  • PDF

T1-, T2-weighted, and FLAIR Imaging: Clinical Application (T1, T2강조영상, FLAIR영상의 임상 적용)

  • Kim, Jae-Hyoung
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.1
    • /
    • pp.9-14
    • /
    • 2009
  • T1-, and T2-weighted imagings and FLAIR (fluid attenuated inversion recovery) imaging are fundamental imaging methods in the brain. T1-weighted imaging is a spin-echo sequence with short TR and short TE and produces the tissue contrast by different T1 relaxation times. In other words, short TR maximizes the difference of the longituidinal magnetization recovery between the tissues. T2-weighted imaging is a spin-echo sequence with long TR and long TE and produces the tissue contrast by different T2 relaxation times. Long TE maximizes the difference of the transverse magnetization decay between the tissues. FLAIR is an inversion recovery sequence using 180 degree inversion pulse. 2500 msec of inversion time is applied to suppress the CSF signal.

  • PDF

Imaging Studies in Mouse Brain Using Clinical 3T MRI Scanner (임상용 3T MRI를 이용한 마우스 뇌의 영상)

  • Lim, Soo-Mee;Park, Eun-Mi
    • Progress in Medical Physics
    • /
    • v.21 no.4
    • /
    • pp.348-353
    • /
    • 2010
  • The purpose of this study was to explore the potentials of a clinical 3T MRI in mouse brains and technical adaptation and optimization. T1-weighted images (T1WI), T2-weighted images (T2WI), FLAIR (Fluid Attenuated Inversion Recovery) images, Gadolinium enhanced T1-weighted images (Gd-T1WI), Diffusion weighted images (DWI) were acquired in brain of 2 mice (weight 20~25 g) with cerebral infarction by occlusion of right middle cerebral artery, 1 hour, 24 hours, 72 hours after infarction and 1 normal mouse brain using clinical 3T MRI scanner. We analyzed differentiation of striatum, ventricle, cerebral cortex, and possibility of detection of acute cerebral infarction. We could differentiate the striatum, ventricle, cerebral cortex on T2WI and on DWI, FLAIR, T1WI, the differentiation of each anatomy of brain was not definite, but acute cerebral infarction was detected on DWI of 1 hour, 24 hours, 72 hours after infarction and on T2WI, FLAIR of 24 hours, 72 hours after infarction. Clinical 3T MRI can be used in differentiation of anatomy of mouse brains and DWI can be helpul in detection of acute cerebral infarction in acute phase. With technical adaptation and optimization clinical 3T MRI can be useful tool for provide preclinical and clinical small animal studies.

Chemical Saturation Breath-hold Fast MR Imaging for characterization of Regional Fatty Changes in Liver (화학적 포화 호흡정지 급속 자기공명영상에서 국소적 간지방병변의 특성화)

  • 김동국;유정식;김태훈;오세정;김지형
    • Investigative Magnetic Resonance Imaging
    • /
    • v.1 no.1
    • /
    • pp.135-141
    • /
    • 1997
  • Purpose: To assess the usefulness of breath-hold fast MR imaging of liver with fat suppression (FS) by application of chemical saturation technique in the diagnosis of regional fatty changes suspected in sonography. Materials and Methods: Thirteen patients who had focal lesions with diffuse, homogeneous signal changes after FS through chemical saturation technique without additional changes of imaging parameter during MR imaging of liver were selected. T1-weighted fast low-angle shot and T2-weighted turbo spin-echo sequences were obtained with or without FS during each single breath-holding session. Subjective changes of signal intensity between the pre-FS and the FS images were compared with the sonographic findings in each lesion. Results: Seven lesions of decreased signal intensity after FS on T1 or T2-weighted images, including three lesions only at FS T1 images, were regarded as focal fat infiltration. All seven lesions had compatible sonographic findings as homogenously echogenic areas. Another six lesions of subjectively increased signal intensity including two lesions only at FS T2 images were regarded as focal fat sparing. All six lesions had sonographic findings as homogenous echo poor areas suggesting focal fat sparing. In cases regarded as fat infiltration, score changes were more prominent at FS T1 images than FS T2 images(p=0.0002). In cases regarded as fat sparing, score changes were more prominent at FS T2 images than FS T1 images(p=0.042). Conclusion: Breath-hold fast T1 and T2-weighted MR imaging with and without chemical saturation pre-pulse may be sufficient for characterization of regional fatty changes in the differential diagnosis of focal hepatic lesion found at sonography.

  • PDF

Optimizations of 3D MRI Techniques in Brain by Evaluating SENSE Factors (삼차원 자기공명영상법의 뇌 구조 영상을 위한 최적화 연구: 센스인자 변화에 따른 신호변화 평가)

  • Park, Myung-Hwan;Lee, Jin-Wan;Lee, Kang-Won;Ryu, Chang-Woo;Jahng, Geon-Ho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.2
    • /
    • pp.161-170
    • /
    • 2009
  • Purpose : A parallel imaging method provides us to improve temporal resolution to obtain three-dimensional (3D) MR images. The objective of this study was to optimize three 3D MRI techniques by adjusting 2D SESNE factors of the parallel imaging method in phantom and human brain. Materials and Methods : With a 3 Tesla MRI system and an 8-channel phase-array sensitivity-encoding (SENSE) coil, three 3D MRI techniques of 3D T1-weighted imaging (3D T1WI), 3D T2-weighted imaging (3D T2WI) and 3D fluid attenuated inversion recovery (3D FLAIR) imaging were optimized with adjusting SESNE factors in a water phantom and three human brains. The 2D SENSE factor was applied on the phase-encoding and the slice-encoding directions. Signal-to-noise ratio(SNR), percent signal reduction rate(%R), and contrast-to-noise ratio(CNR) were calculated by using signal intensities obtained in specific regions-of-interest (ROI). Results : In the phantom study, SENSE factor = 3 was provided in 0.2% reduction of signals against without using SENSE with imaging within 5 minutes for 3D T1WI. SENSE factor = 2 was provided in 0.98% signal reduction against without using SENSE with imaging within 5 minutes for 3D T2WI. SENSE factor = 4 was provided in 0.2% signal reduction against without using SENSE with imaging around 6 minutes for 3D FLAIR. In the human brain study, SNR and CNR were higher with SENSE factors = 3 than 4 for all three imaging techniques. Conclusion : This study was performed to optimize 2D SENSE factors in the three 3D MRI techniques that can be scanned in clinical time limitations with minimizing SNR reductions. Without compromising SNR and CNR, the optimum 2D SENSE factors were 3 and 4, yielding the scan time of about 5 to 6 minutes. Further studies are necessary to optimize 3D MRI techniques in other areas in human body.

  • PDF

Anthracofibrosis Mimicking Lung Cancer on CT: MR Imaging Findings (CT상 폐암과 유사하게 보이는 기관지 탄분 섬유화증의 자기공명영상 소견)

  • 류대식;이덕희;정승문;최수정;박성빈;박만수;강길현
    • Investigative Magnetic Resonance Imaging
    • /
    • v.5 no.1
    • /
    • pp.18-23
    • /
    • 2001
  • Purpose : To describe the MRI findings in the bronchial anthracofibrosis mimicking lung cancer on CT examination. Materials and methods : Ten patients, who showed CT findings mimicking lung cancer, were selected among fifty patients of bronchial anthracofibrosis proven by bronchoscopic biopsy, consisting of two men and eight women, ranging in age from 58 to 79 years old faverage age, 68 years old). CT scan and MRI were performed in all patients (n=10). Percutaneous lung biopsy on mass was performed in one patient. MRI findings were analyzed with the emphasis on the signal intensity of the mass (n=4), collapsed lung (n=4) and Iymph node (n=10) on axial T1 and T2-weighted images by two radiologists in consensus. No contrast enhancement was used in all cases. Results : CT scan revealed mass (n=4), atelectasis with obstructive pneumonia(n=4) and bronchial wall thickening(n=2). All patients showed enlarged medistinal Iymph nodes(n=10). The mass showed low signal intensity on T1WI and T2WI (n =4). The collapsed lung in patients with atelectasis indicated intermediate signal intensity on T1WI and low signal intensity on T2WI (n= 4). Nine patients showed low sisnal intensity of Iymph node on T1WI and T2WI, except one patient who showed central high signal intensity with peripheral rim of low signal intensity in right lower paratracheal llmph node on T2WI. Conclusion : Low signal intensity of a mass, collapsed lung, and lymph nodes on T2WI in anthracofibrosis patients may be helpful in differentiation of the lesion from lung cancer.

  • PDF

Clinical Experience with 3.0 T MR for Cardiac Imaging in Patients: Comparison to 1.5 T using Individually Optimized Imaging Protocols (장비 별 최적화된 영상 프로토콜을 이용한 환자에서의 3.0T 심장 자기공명영상의 임상경험: 1.5 T 자기공명영상과의 비교)

  • Ko, Jeong Min;Jung, Jung Im;Lee, Bae Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.17 no.2
    • /
    • pp.83-90
    • /
    • 2013
  • Purpose : To report our clinical experience with cardiac 3.0 T MRI in patients compared with 1.5 T using individually optimized imaging protocols. Materials and Methods: We retrospectively reviewed 30 consecutive patients and 20 consecutive patients who underwent 1.5 T and 3 T cardiac MRI within 10 months. A comparison study was performed by measuring the signal-to-noise ratio (SNR), the contrast-to-noise ratio (CNR) and the image quality (by grading each sequence on a 5-point scale, regarding the presence of artifacts). Results: In morphologic and viability studies, the use of 3.0 T provided increase of the baseline SNRs and CNRs, respectively (T1: SNR 29%, p < 0.001, CNR 37%, p < 0.001; T2-SPAIR: SNR 13%, p = 0.068, CNR 18%, p = 0.059; viability imaging: SNR 45%, p = 0.017, CNR 37%, p = 0.135) without significant impairment of the image quality (T1: $3.8{\pm}0.9$ vs. $3.9{\pm}0.7$, p = 0.438; T2-SPAIR: $3.8{\pm}0.9$ vs. $3.9{\pm}0.5$, p = 0.744; viability imaging: $4.5{\pm}0.8$ vs. $4.7{\pm}0.6$, p = 0.254). Although the image qualities of 3.0 T functional cine images were slightly lower than those of 1.5 T images ($3.6{\pm}0.7$ vs. $4.2{\pm}0.6$, p < 0.001), the mean SNR and CNR at 3.0 T were significantly improved (SNR 143% increase, CNR 108% increase, p < 0.001). With our imaging protocol for 3.0 T perfusion imaging, there was an insignificant decrease in the SNR (11% decrease, p = 0.172) and CNR (7% decrease, p = 0.638). However, the overall image quality was significantly improved ($4.6{\pm}0.5$ vs. $4.0{\pm}0.8$, p = 0.006). Conclusion: With our experience, 3.0 T MRI was shown to be feasible for the routine assessment of cardiac imaging.