• Title/Summary/Keyword: T-type $Ca^{2+}$

Search Result 190, Processing Time 0.029 seconds

Role of T-type $Ca^{2+}$ Channels in the Spontaneous Phasic Contraction of Pregnant Rat Uterine Smooth Muscle

  • Lee, Si-Eun;Ahn, Duck-Sun;Lee, Young-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.3
    • /
    • pp.241-249
    • /
    • 2009
  • Although extracellular $Ca^{2+}$ entry through the voltage-dependent $Ca^{2+}$ channels plays an important role in the spontaneous phasic contractions of the pregnant rat myometrium, the role of the T-type $Ca^{2+}$ channels has yet to be fully identified. The aim of this study was to investigate the role of the T-type $Ca^{2+}$ channel in the spontaneous phasic contractions of the rat myometrium. Spontaneous phasic contractions and $[Ca^{2+}]_i$ were measured simultaneously in the longitudinal strips of female Sprague-Dawley rats late in their pregnancy (on day 18 ${\sim}$ 20 of gestation: term=22 days). The expression of T-type $Ca^{2+}$ channel mRNAs or protein levels was measured. Cumulative addition of low concentrations (< 1 ${\mu}M$) of nifedipine, a L-type $Ca^{2+}$ channel blocker, produced a decrease in the amplitude of the spontaneous $Ca^{2+}$ transients and contractions with no significant change in frequency. The mRNAs and proteins encoding two subunits (${\alpha}$ 1G, ${\alpha}$ 1H) of the T-type $Ca^{2+}$ channels were expressed in longitudinal muscle layer of rat myometrium. Cumulative addition of mibefradil, NNC 55-0396 or nickel induced a concentration-dependent inhibition of the amplitude and frequency of the spontaneous $Ca^{2+}$ transients and contractions. Mibefradil, NNC 55-0396 or nickel also attenuated the slope of rising phase of spontaneous $Ca^{2+}$ transients consistent with the reduction of the frequency. It is concluded that T-type $Ca^{2+}$ channels are expressed in the pregnant rat myometrium and may play a key role for the regulation of the frequency of spontaneous phasic contractions.

DTNB oxidation effects on T-type $Ca^{2+}$ channel isoforms

  • Lee, Sang-Soo;Kang, Ho-Won;Park, Jin-Yong;Lee, Jung-Ha
    • Animal cells and systems
    • /
    • v.15 no.2
    • /
    • pp.131-138
    • /
    • 2011
  • Redox regulation is one of the ubiquitous mechanisms to modulate ion channels. We here investigated how 5,5'-dithio-bis (2-nitrobenzoic acid), a cysteine specific oxidizing reagent, modulates $Ca_v3.1$ and $Ca_v3.2$ T-type $Ca^{2+}$ channels expressed in Xenopus oocytes. Application of the reagent inhibited $Ca_v3.1$ and $Ca_v3.2$ currents in a dose-dependent manner. The oxidizing reagent (1 mM) reduced the peak amplitude of $Ca_v3.1$ and $Ca_v3.2$ currents by ~50% over 2-3 minutes and the decreased currents were fully recovered upon washout of it. The reagent slowed the activation and inactivation kinetics of $Ca_v3.1$, $Ca_v3.2$, and $Ca_v3.3$ channel currents. Notably, the reagent positively shifted both activation and steady-state inactivation curves of $Ca_v3.1$, while it did not those of $Ca_v3.2$. Utilizing chimeric channels from $Ca_v3.1$ and $Ca_v3.2$, we localized the domains III and IV of $Ca_v3.1$ responsible for the positive shifts of channel activation and steady-state inactivation. These findings provide hints relevant to the electrophysiological and molecular mechanisms accounting for the oxidative regulation of T-type channels.

Expression of Low Voltage-Activated $Ca^{2+}$ Channels in Xenopus Oocytes

  • Lee, Jung-Ha;Han, Dong-Pyo
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.614-618
    • /
    • 2001
  • Low-threshold T-type $Ca^{2+}$ channels are distinctive voltage-operated gates for external $Ca^{2+}$ entry around a resting membrane potential due to their low voltage activation. These phenomena have already been extensively studied due to their relevance in diverse physiological functions. Recently, three T-type $Ca^{2+}$ channel ${\alpha}$$_1$subunits were cloned and their biophysical properties were characterized after expression in mammalian expression systems. In this study, ${\alpha_IG} and {\alpha_IH}$ low-threshold $Ca^{2+}$ channels were expressed and characterized in Xenopus oocytes after adding 5' and 3'untranslated portions of a Xenopus ${\beta}$ globin to improve their expression levels. The added portions dramatically enhanced the expression levels of the ${\alpha_IG} and {\alpha_IH}$ T-type channels. When currents were recorded in 10 mM $Ba^{2+}$ as the charge carrier, the activation thresholds were about -60 mV, peak currents appeared at -20 mV, and the reversal potentials were between +40 and +45. The activation time constants were very similar to each other, while the inactivation time constants of the ${\alpha_IG}$ currents were smaller than those of ${\alpha_IH}$. Taken together, the electrophysiological properties of the ${\alpha_IG} and {\alpha_IH}$ channels expressed in Xenopus oocytes were similar to the previously reported characteristics of low-threshold $Ca^{2+}$ channel currents.

  • PDF

Low-Voltage Activated $Ca^{2+}$ Current Carried via T-Type Channels in the Mouse Egg

  • Yang, Young-Sun;Park, Young-Geun;Cho, Soo-Wan;Cheong, Seung-Jin;Haan, Jae-Hee;Park, Choon-Ok;Hong, Seong-Geun
    • The Korean Journal of Physiology
    • /
    • v.27 no.1
    • /
    • pp.107-114
    • /
    • 1993
  • Most of voltage operated $Ca^{2+}$ channels can be divided into three types (T-, N-, and L-type), according to the electrical and pharmacological properties. Their distribution is closely related to cell specific functions. Properties of the voltage activated $Ca^{2+}$ current in mouse eggs were examined to classify channel types and to deduce the function by using whole cell voltage clamp technique. $Ca^{2+}$ currents appeared below -40 mV and reached a maximum at -15 mV (half maximum was -31 mV), then decayed rapidly (inactivation time constant ${\tau}=28.2{\pm}9.59$ ms at -10 mV within 50 ms after the onset of step depolarization. Activation and inactivation of the $Ca^{2+}$ channel was steeply dependent on voltage, in a relatively low range of $-70\;mV{\sim}-10 mV,$ half maximum of activation was -31 mV and that of inactivation was -39 mV, respectively. This current was not decreased significantly by nifedipine, a specific dihydropyridine $Ca^{2+}$ channel blocker in the range of $1\;{\mu}M\;to\;100{\mu}M.$ The inhibitory effect of $Ni^{2+}\;on\;Ca^{2+}$ current was greater than that of $Cd^{2+}.$ The conductance of $Ba^{2+}$ through the channel was equal to or lower than that of $Ca^{2+}$ These results implied that $Ca^{2+}$ current activated at a lower voltage in the mouse egg is carried via a $Ca^{2+}$ channel with similar properties that of the T-type channel.

  • PDF

IS CALCIUM II TRIPLET A GOOD METALLICITY INDICATOR OF GLOBULAR CLUSTERS IN EARLY-TYPE GALAXIES?

  • CHUNG, CHUL;YOON, SUK-JIN;LEE, SANG-YOON;LEE, YOUNG-WOOK
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.489-490
    • /
    • 2015
  • We present population synthesis models for the calcium II triplet (CaT), currently the most popular metallicity indicator, based on high-resolution empirical spectral energy distributions (SEDs). Our new CaT models, based on empirical SEDs, show a linear correlation below [Fe/H] ~ -0.5, but the linear relation breaks down in the metal-rich regime by converging to the same equivalent width. This relation shows good agreement with the observed CaT of globular clusters (GCs) in NGC 1407 and the Milky Way. However, a model based on theoretical SEDs does not show this feature of the CaT and fails to reproduce observed GCs in the metal-rich regime. This linear relation may cause inaccurate metallicity determination for metal-rich stellar populations. We have also confirmed that the effect of horizontal-branch stars on the CaT is almost negligible in models based on both empirical and theoretical SEDs. Our new empirical model may explain the difference between the color distributions and CaT distributions of GCs in various early-type galaxies. Based on our model, we claim that the CaT is not a good metallicity indicator for simple stellar populations in the metal-rich regime.

Studies of Changes of $Ca^{2+}$-channel Distribution in the Activated Mouse Ova (생쥐 난자의 활성화에 따른 $Ca^{2+}$-channel의 분포 변화에 관한 연구)

  • Chang, Yeon-Soo;Bae, In-Ha
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.28 no.1
    • /
    • pp.13-24
    • /
    • 2001
  • Objective: In muscle and neuronal cells, calcium channels have been classified by electrophysiological and pharmacological properties into (1) voltage-dependent $Ca^{2+}$-channel (1) P/Q-type $Ca^{2+}$-channel (2) N-type $Ca^{2+}$-channel (3) L-type $Ca^{2+}$-channel (4) T-type $Ca^{2+}$-channel (5) R-type $Ca^{2+}$-channel. The present study was done in order to investigate whether there is any difference in $Ca^{2+}$-channel distribution between activated and normally fertilized embryos. Methods: The immunocytochemical method was used to identify the existence of voltage-dependent $Ca^{2+}$-channels in parthenogenetically activated 2-cell embryos by ethanol and $SrCl_2$ treatment. These 2-cell embryos were obtained by exposure to 6% ethanol for 6 min and to 10 mM $SrCl_2$ for 2h. Results: P/Q-type $Ca^{2+}$-channels and L-type $Ca^{2+}$-channels have been identified. Whereas, three type of $Ca^{2+}$-channel P/Q-type, N-type, L-type have been identified in 2-cell embryos fertilized in vivo. Conclusion: Activation by ethanol was faster than those by $SrCl_2$. However, there was difference in DAB staining of the embryos between ethanol and $SrCl_2$ treatment (87.7% and 54.1 %). Intensity of staining was also different between ethanol- and $SrCl_2$-treated group. However, it has not been known why there was some difference in DAB staining and staining intensity in the present study.

  • PDF

T-Type Calcium Channels Are Required to Maintain Viability of Neural Progenitor Cells

  • Kim, Ji-Woon;Oh, Hyun Ah;Lee, Sung Hoon;Kim, Ki Chan;Eun, Pyung Hwa;Ko, Mee Jung;Gonzales, Edson Luck T.;Seung, Hana;Kim, Seonmin;Bahn, Geon Ho;Shin, Chan Young
    • Biomolecules & Therapeutics
    • /
    • v.26 no.5
    • /
    • pp.439-445
    • /
    • 2018
  • T-type calcium channels are low voltage-activated calcium channels that evoke small and transient calcium currents. Recently, T-type calcium channels have been implicated in neurodevelopmental disorders such as autism spectrum disorder and neural tube defects. However, their function during embryonic development is largely unknown. Here, we investigated the function and expression of T-type calcium channels in embryonic neural progenitor cells (NPCs). First, we compared the expression of T-type calcium channel subtypes (CaV3.1, 3.2, and 3.3) in NPCs and differentiated neural cells (neurons and astrocytes). We detected all subtypes in neurons but not in astrocytes. In NPCs, CaV3.1 was the dominant subtype, whereas CaV3.2 was weakly expressed, and CaV3.3 was not detected. Next, we determined CaV3.1 expression levels in the cortex during early brain development. Expression levels of CaV3.1 in the embryonic period were transiently decreased during the perinatal period and increased at postnatal day 11. We then pharmacologically blocked T-type calcium channels to determine the effects in neuronal cells. The blockade of T-type calcium channels reduced cell viability, and induced apoptotic cell death in NPCs but not in differentiated astrocytes. Furthermore, blocking T-type calcium channels rapidly reduced AKT-phosphorylation (Ser473) and $GSK3{\beta}$-phosphorylation (Ser9). Our results suggest that T-type calcium channels play essential roles in maintaining NPC viability, and T-type calcium channel blockers are toxic to embryonic neural cells, and may potentially be responsible for neurodevelopmental disorders.

Observation of the Incidence of Acrosome Reaction in Human Spermatozoa Treated with Mibefradil as a T-type $Ca^{2+}i$ Channels Inhibitor (T-형 $Ca^{2+}$ 채널 길항제인 Mibefradil을 첨가한 인간 정자의 첨체반응 관찰)

  • Lee, Jae-Ho;Son, Weon-Young;Lee, Jung-Ha;Lee, In-Sun;Kim, Young-Chan;Han, Ching-Tack
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.27 no.1
    • /
    • pp.9-14
    • /
    • 2000
  • Objective: The sperm acrosome reaction is a $Ca^{2+}$-dependent exocytotic event that is triggered by adhesion to the mammalian egg's zona pellucida. Previous studies suggested a role of $Ca^{2+}$ channels in acrosome reactions. This study was conducted to investigate the T-type calcium channel is operated in acrosome reaction of human spermatozoa. Method: Human semen samples were obtained from healthy donors with normal criteria. The spermatozoa were divided into five groups: Group 1 were non-treated as a control; Group 2 where spermatozoa were exposed to 5 ${\mu}M$ $Ca^{2+}$ A23187 $(Ca^{2+}i)$; Group 3 where spermatozoa were exposed 5 ${\mu}M$ $Ca^{2+}i$ and mibefradil; Group 4 where spermatozoa were exposed 5 ${\mu}M$ $Ca^{2+}i$ and nifedipine, and Group 5 where spermatozoa were treated with 5 ${\mu}M$ $Ca^{2+}i$ and both of mibefradil and nifedipine. Spermatozoa in all groups were retrieved after incubation for 15 and 30 minutes at $37^{\circ}C$. After staining with PSA-FITC, fluorescence was observed under a fluorescence microscope, and AR was evaluated on a total>100 spermatozoa/side. Result and Conclusion: We observed on acrosome reaction inhibition rate in human spermatozoa the various of concentration of mibefradil, nifedipine. Maximum response was noted with 1.0 ${\mu}M$ mibefradil and the decrease of acrosome reaction inhibition rate 45%. Nifedipine in acrosome reaction inhibition rate was only about 25%. The $Ca^{2+}i$-induced AR of spermatozoa was significantly suppressed by mibefradil. Incidence of the suppression was depending on concentration of mibefradil. Results from the present study suggest that the human spermatozoa possess T-type channel. The observation that reversible inhibitor of T channels in male germ cells provides a new mechanism of contraceptive action.

  • PDF

Solubility, vapor pressure, duhring and enthalpy-concentration charts of$H_2$O/(LiBr+$CaC1_2$) solution as a new working fluid ($H_2$O/(LiBr+$CaC1_2$) 3성분계 작동매체의 용해도, 증기압측정 및 듀링 선도, 엔탈피-농도 선도 작성)

  • 이형래;구기갑;정시영
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.6
    • /
    • pp.666-673
    • /
    • 1998
  • Solubilities (LiBr+$CaC1_2$) in water were measured at temperatures form 267.51 to 306.17K for $CaC1_2$ (LiBr+$CaC1_2$)=0.24 by mole. Experimental data were correlated with polynomial equations. Average absolute deviations between the measured and calculated values were 0.31% at concentration smaller than 60wt% and 0.41% at concentration larger than 60wt%, respectively. Vapor pressures were measured at temperatures from 296.75 to 436.75K and concentrations from 40 to 70wt%. Vapor pressure data were fitted to a Antoine-type equation and average absolute deviation was 2.98%. The P-T-X chart and H-T-X chart of $H_2O$/(LiBr+$CaC1_2$) system were constructed by using the correlation equations of solubility, vaper pressure, and heat capacity. The P-T-X chart indicates that $H_2O$/(LiBr+$CaC1_2$) system has potential as a possible working fluid for air-cooled absorption chillers.

  • PDF

Differential Expression of Four $Ca_v$3.1 Splice Variants in the Repeat III-IV Loop

  • Lee, Sang-Soo;Park, You-Mi;Kang, Ho-Won;Bang, Hyo-Weon;Jeong, Seong-Woo;Lee, Jung-Ha
    • Animal cells and systems
    • /
    • v.12 no.3
    • /
    • pp.137-141
    • /
    • 2008
  • Molecular cloning revealed the three isoforms($Ca_v3.1,\;Ca_v3.2,\;and\;Ca_v3.3$) of the T-type calcium channel subfamily. Expression studies exhibited their distinctive electrophysiological and pharmacological properties, accounting for diverse properties of T-type calcium channel currents previously characterized from isolated cells. However, electrophysiological properties of ion channels have shown to be more diversified by their splice variants. We here searched splice variants of rat $Ca_v3.1$ T-type channel by reverse-transcription-polymerase chain reaction(RT-PCR) to further explore diversity of $Ca_v3.1$. Interestingly, analyses of cloned RT-PCR products displayed that there were at least four splicing variants of rat $Ca_v3.1$ in the loop connecting repeats III and IV. Southern blot analyses indicated that the predominantly detected variant in brain was $Ca_v3.1a$(492 bp), which were rarely detected in most of peripheral tissues. Other two variants($Ca_v3.1c$, 546 bp; $Ca_v3.1d$, 525 bp) were detected in most of the tissues examined. The smallest isoform($Ca_v3.1b$, 471 bp) was rarely detected all the tissues. Electrophysiological characterization of the splicing variants indicated that the splice variants differ in inactivation kinetics and the voltage dependence of activation and inactivation as well.