• Title/Summary/Keyword: T-peel test

Search Result 50, Processing Time 0.029 seconds

Adhesion Properties of UV-curable Acrylic PSA Tape for Automotive Sidemolding and Emblem (자동차용 사이드 몰딩과 엠블럼 적용을 위한 UV 경화형 아크릴 점착 테이프의 점착물성)

  • Park, Ji-Won;Lee, Seung-Woo;Kim, Hyun-Joong;Won, Dong-Bok;Kim, Dong-Bok;Lee, Kang-Shin;Woo, Hang-Soo;Kim, Eun-Ah
    • Journal of Adhesion and Interface
    • /
    • v.12 no.3
    • /
    • pp.81-87
    • /
    • 2011
  • In this study, UV curing and crosslinking process was introduced for synthesis of acrylic foam tape that can be applied to the the automotive assembly process. Polymerized adhesive are laminated to baseform and varying the thickness of specimens were prepared. To measure basic mechanical properties, stainless steel was used. And in the test peel, dynamic shear and t-block were used. The acrylform adhesive show better results compare with typical adhesive and the properties depand on external factors - thick, wetting time -. To analysis functions of acrylic foam adhesive used to automobile production, evaluate the adhesive properties on the various plastic substrate. In PP and PE are categorized low surface energy materials, their properties have not been expressed. But dynamic shear tests show that some properties could be expressed by the difference break mechanism.

A Study on Carbon Fiber Sheet Rehabilitation of High Strength Reinforced Concrete Beams Mixed Steel Fibrous (강섬유를 혼입한 고강도 콘크리트 보의 탄소섬유쉬트 보강에 관한 연구)

  • 곽계환;곽경헌;정태영;고성재
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.491-496
    • /
    • 2001
  • In recent years, the research and development about the new material proceed rapidly and actively in the building industry. As building structures become bigger, higher and more specialized, so does the demand for material with higher strength. In the future, we will need to research repair and rehabilitation to make high strength concrete mixed steel fibrous building safe. The carbon fiber reinforced plastic bonding method is widely used in reinforcing the existing concrete structure among the various methods. The repair of initiate loaded reinforced high-strength concrete beams mixed steel fibrous with epoxy bonded Carbon Fiber Sheets(CFS) was investigated experimentally. The CFS thickness and length were varied to assess the peel failure at the curtailment of CFS, The behaviour of the repaired beams was represented by load-longitudinal steel strain relation and failure modes were discussed. The test results indicate that CFS is very effective for strengthening the demand beams and controlling deflections of reinforced high strength concrete beams mixed steel fibrous happen diagonal crack, the increase in the number of CFS layers over two layers didn't effect the increase in the strength of beams.

  • PDF

Surface Modification Effect and Mechanical Property of para-Aramid Fiber by Low-temperature Plasma Treatment (저온 플라즈마 처리를 이용한 파라 아라미드 섬유의 표면 개질 효과 및 역학적 특성)

  • Park, Sung-Min;Kwon, Il-Jun;Kim, Myung-Soon;Kim, Sam-Soo;Choi, Jae-Young;Yeum, Jeong-Hyun
    • Textile Coloration and Finishing
    • /
    • v.24 no.2
    • /
    • pp.131-137
    • /
    • 2012
  • para-Aramid fibers were treated by low-temperature plasma to improve the adhesion. The surface of para-aramid fibers were treated with gaseous plasma of several discharge power and treatment time in oxygen gas at 1Torr pressure. The treated fibers at low-temperature plasma were taken oxygen-containing functional groups and micro-crator on the surface. The modified fibers were measured by dynamic contact angle analyzer and XPS(X-ray photoelectron spectroscopy). The Interfacial adhesion properties of aramid fabric and polyurethane resin were determined by T-peel test. The surface of aramid fibers were observed by FE-SEM photographs. It was found that surface modification and chemical component ratio of the aramid fibers were improved wettability and adhesion characterization.

Enhanced $Al_2O_3/Ti$ Interfacial Properties Using $NbC_xC_{1-x}/Y_2O_3$ Interlayers - (1) Sputtering and Thermal Stability ($NbC_xC_{1-x}/Y_2O_3$ 박막코팅을 이용한 $Al_2O_3/Ti$ 계면특성향상 - (1) 스퍼터링 및 열안정성)

  • 문철희
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.8
    • /
    • pp.908-913
    • /
    • 1997
  • Multilayer NbCxC1-x/Y2O3/Ti were sputter-coated on the alumina substrate, starting with a 0.7 ㎛ thick NbCxC1-x layer grown on substrate, followed by 0.7 ㎛ thick Y2O3 layer and 1 ㎛ thick Ti layer. To find out the optimum conditions for thickness uniformity and adhesion, sputtering works have been done with the variation of sputtering power and Ar pressure. After vacuum annealing at 950℃ and 1000℃, the thermal stability of the NbCxC1-x/Y2O3/Ti coated alumina substrates has been investigated by peel off test. The coating scheme didn't cause any debonded layer after an annealing at 950℃ for 3hrs. However, it was peeled off after annealing at 1000℃ for 3hr. It was found that the thermal stability of Al2O3/NbCxC1-x/Y2O3/Ti coating scheme changed with the NbCxC1-x composition.

  • PDF

Adhesion and Electrical Performance by Plasma Treatment on Semiconductive-Insulation Interface Layer of Silicone Rubber (실리콘 고무의 플라즈마 표면처리된 반도전-절연계면 처리에 따른 접착특성과 절연성능)

  • Hwang, Sun-Mook;Lee, Ki-Taek;Hong, Joo-Il;Huh, Chang-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05b
    • /
    • pp.11-14
    • /
    • 2004
  • In this paper, the effect of adhesion properties of semiconductive-insulating interface layer of silicone rubber on electrical properties was investigated. The modifications produced on the silicone surface by oxygen plasma were accessed using ATR-FTIR, contact angle and AFM. Adhesion was obtained from T-peel tests of semiconductive layer having different treatment durations. In addition, ac breakdown test was carried out for elucidating the change of electrical property with duration of plasma treatment. From the results, the treatment in the oxygen plasma produced a noticeable increase in surface energy, which can be mainly ascribed to the the creation of O-H and C=O. It is observed that adhesion performance was determined by not surface energy but roughness level of silicone surface. It is found that ac dielectric strength was increased with improving the adhesion between the semiconductive and insulating interface.

  • PDF

Application of reflow soldering method for laminated high temperature superconductor tapes

  • Lee, Nam-Jin;Oh, Sang-Soo;Kim, Ho-Sup;Ha, Dong-Woo;Ha, Hong-Soo;Ko, Rock-Kil;Shin, Hyung-Seop;Youm, Do-Jun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.2
    • /
    • pp.9-12
    • /
    • 2010
  • A lamination system using reflow soldering was developed to enhance the mechanical properties of high temperature superconductor (HTS) tape. The laminated coated conductor tape was fabricated using the continuous lamination process. The mean, maximum, and minimum tensile loads in a T-peel test of the laminated coated conductor were 9.9 N, 12.5 N, and 7.6 N, respectively. The critical current ($I_c$) distributions of the non-laminated and laminated coated conductor were compared using anon-contact Hall probe method. The transport $I_c$ nearly matched the non-contact $I_c$; however, some degraded Ic regions were found on the length of 800 cm of laminated coated conductor. We confirmed that the cause of the partially degraded $I_c$ was due to an increase in line tension by (1) solidification induced by a change of composition that usually occurs in molten brass (Cu, Zn) in solder, or (2) non-homogeneity of the thickness of the coated conductor or metal tapes. We suggest that reflow soldering is a promising method for reinforced HTS tape if the controlling solder thickness and lamination guide are modified.

Synthesis and Characteristics of Unsaturated Polyester Modified with Rosin Containing 2-Hydroxyethylmethacrylate (2-Hydroxyethylmethacrylate가 도입된 로진 변성 불포화 폴리에스테르의 합성과 그 특성)

  • Kang, D.W.;Yoon, D.K.;Kweon, D.K..
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.450-455
    • /
    • 1999
  • Unsaturated diol (UD) was prepared from the esterification of maleic anhydride with diethylene glycol (DEG). Unsaturated polyesters modified with rosin (UPMR) or with rosin maleic anhydride adduct (RMA) from 2-hydroxyethylmethacrylate (HEMA) and rosin (UPMRH) were prepared by the reaction of UD with RMA or RMA-HEMA. After crosslinking of UPMR and UPMRH with styrene and methylmethacrylate (MMA), respectively, solvent resistance, tensile strength, and adhesion property of the resins were measured. UPMR crosslinked with styrene or MMA shows an excellent resistance to water and acid. Solvents resistance and tensile strength of UPMR using styrene as crosslinking agent were increased compared with those of UPMR using MMA as crosslinking agent. UPMRH showed better solvents resistance and tensile strength than UPMR. Adhesion strengths of UPMR crosslinked with styrene and MMA were 1.61 and 3.02 MPa, and those of UPMRH were 2.32 and 3.89 MPa, respectively.

  • PDF

Pre-treatment condition and Curing method for Fabrication of Al 7075/CFRP Laminates (Al 7075/CFRP 적층 복합재료 제조를 위한 전처리 조건과 경화방법 연구)

  • 이제헌;김영환
    • Composites Research
    • /
    • v.13 no.4
    • /
    • pp.42-53
    • /
    • 2000
  • A study has been made to establish an optimum condition in the surface treatment and curing method that is important for the fabrication of Al 7075/CFRP laminates. PAA(Phosphoric Acid Anodizing) provided a good adhesive strength and FPL(Sulfuric / Sodium Dichromate Acid Etching) had a similar adhesive strength with PAA. On the other hand, the poor adhesive strength was shown on vapor degrease and CAA(Chromic Acid Anodizing). By using the atomic force microscope(AFM), it was found that the PAA oxide surface obviously had a greater degree of microroughness as compared to vapor degrease, CAA and FPL treated surfaces. These results support the concept of a mechanical interlocking of the adhesive with-in the oxide pores as the predominant adhesion mechanism. In curing methods, the adhesive strength of co-curing method was higher than that of secondary curing method. With respect to stability of specimen shape, the secondary curing method was better than co-curing method. DMA(Dynamic Mechanical Analysis) test revealed $T_g$ in curing times over 60 min is nearly same, so it is estimated they will have similar degree of curing and joint durability in using FM300M adhesive film.

  • PDF

Delamination Limit of Aluminum Foil-Laminated Sheet During Stretch Forming (등이축인장 모드 변형시 알루미늄 포일 접착강판의 박리한계 예측)

  • Lee, Chan-Joo;Son, Young-Ki;Lee, Jung-Min;Lee, Seon-Bong;Byun, Sang-Deog;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.4
    • /
    • pp.413-420
    • /
    • 2012
  • An aluminum foil-laminated sheet is a laminated steel sheet on which aluminum foil is adhesively bonded. It is usually used on the outer panel of home appliances to provide an aluminum feeling and appearance on the surface of the product. The delamination of aluminum foil is one of the main problems during the stretch forming process. The purpose of this study is was to determine the delamination limit of an aluminum foil-laminated sheet in the stretch forming process. The delamination was dependent on the bonding strength between aluminum foil and steel sheet. The fracture behavior of the interface between the aluminum foil and the steel sheet was described by a cohesive zone model. A finite element was conducted with the cohesive zone model to analyze the relationship between the delamination limit and the bonding strength of the interface. The interface bonding strength was evaluated by lap shear and T-peel test. The delamination limit of the aluminum foil-laminated sheet was determined by using the bonding strength of the steel sheet. The delamination limit was also verified by the Erichsen test.

Effect of Post Heat Treatment Temperature on Interface Diffusion Layer and Bonding Force in Roll Cladded Ti/Mild steel/Ti Material (압연 클래드된 Ti/Mild steel/Ti 재의 계면확산층과 접합력에 미치는 후열처리온도의 영향)

  • Lee, Sangmok;Kim, Su-Min;We, Se-Na;Bae, Dong-Hyun;Lee, Geun-An;Lee, Jong-Sup;Kim, Yong-Bae;Bae, Dong-Su
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.4
    • /
    • pp.316-323
    • /
    • 2012
  • The aim of this study is to investigate the effect of post heat treatment on bonding properties of roll cladded Ti/MS/Ti materials. First grade Ti sheets and SPCC mild steel sheets were prepared and then Ti/MS/Ti clad materials were fabricated by a cold rolling and post heat treatment process. Microstructure and point analysis of the Ti/MS interfaces were performed using the SEM and EDX Analyser. Diffusion bonding was observed at the interfaces of Ti/MS. The thickness of the diffusion layer increased with post heat treatment temperature and the diffusion layer was verified as having $({\epsilon}+{\zeta})+({\zeta}+{\beta}-Ti)$ intermetallic compounds at $700^{\circ}C$ and an $({\zeta}+{\beta}-Ti)$ intermetallic compound at $800^{\circ}C$, respectively. The micro Knoop hardness of mild steel decreased with post heat treatment temperature; however, those of Ti decreased at a range of $500{\sim}600^{\circ}C$ and showed a uniform value until $800^{\circ}C$ and then increased rapidly up to $900^{\circ}C$. The micro Knoop hardness value of the diffusion layer increased up to $700^{\circ}C$ and then saturated with post heat treatment. A T-type peel test was used to estimate the bonding forces of Ti/Mild steel interfaces. The bonding forces decreased up to $800^{\circ}C$ and then increased slightly with post heat treatment. The optimized temperature ranges for post heat treatment were $500{\sim}600^{\circ}C$ to obtain the proper formability for an additional plastic deformation process.