• Title/Summary/Keyword: T-flange

Search Result 139, Processing Time 0.029 seconds

Evaluation on the In-plane Bending Moment for T-joints with Square Hollow Structural Sections (각형강관 T형 접합부의 면내 휨모멘트 평가)

  • Park, Keum Sung;Lee, Sang Sup;Choi, Young Hwan;Bae, Kyu Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.5
    • /
    • pp.451-459
    • /
    • 2009
  • The purpose of this study was to evaluate the in-plane bending moment for T-joints made of cold-formed square hollow steel sections. In the previous studies, the T-joint was shown not to have an obvious peak load, and the failure mode was the main chord flange failure at the branch-width-to-chord-width ratio ($\beta$) of below 0.71. Based on the experimental results, including the tests conducted by Zhao, the deformation limit of 1% B was proposed for ${16.7{\leq}2{\gamma}(=B/T){\leq}33}$ and ${0.34{\leq}{\beta}(=b_{1}/B){\leq}0.71}$. Then, the ultimate in-plane bending strength was shown to be Mu=1.5${\cdot}$M1% B. The existing strength formulae for the original T-joint were investigated and were determined to be the main chord flange failure for the branch-squared T-joint. The bending strength formulae of CIDECT and other researchers were compared with the test results. Finally, a reasonably good agreement with Zhao's formula was found. Therefore, the design guidelines were presented based on Zhao's strength formula for T-joints.

UHV Welding for The PLS Vacuum Chambers (포항가속기 저장링 진공 Chamber 용접)

  • 최만호;정상수;김효윤;김명진;이해철;한영진;최우천
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.3
    • /
    • pp.275-281
    • /
    • 1993
  • 본 논문은 포항가속기에서 건설 중인 진공 chamger의 용접에 관한 것이다. 저장링에 전자빔을 5시간 이상 저장하기 위하여 10-10torr 이하로 진공도를 유지하도록 설계되어 있기 때문에 초고진공에 적합한 TIG 용접(tungsten inert gas welding)을 하였다. 진공 chamber는 Al 5083-H321이며 flange의 재질은 Al 2219-T852이다. Sector chamber I, II의 총 용접 길이는 각각 27m, 37m이며 진공에 유해한 균열과 virtual leak가 생기지 않도록 하는 용접조건 등을 선정하였다.

  • PDF

Modeling for fixed-end moments of I-sections with straight haunches under concentrated load

  • Soto, Inocencio Luevanos;Rojas, Arnulfo Luevanos
    • Steel and Composite Structures
    • /
    • v.23 no.5
    • /
    • pp.597-610
    • /
    • 2017
  • This paper presents a mathematical model for fixed-end moments of I-sections with straight haunches for the general case (symmetrical and/or non-symmetrical) subjected to a concentrated load localized anywhere on beam taking into account the bending deformations and shear, which is the novelty of this research. The properties of the cross section of the beam vary along its axis "x", i.e., the flange width "b", the flange thickness "t", the web thickness "e" are constant and the height "d" varies along of the beam, this variation is linear type. The compatibility equations and equilibrium are used to solve such problems, and the deformations anywhere of beam are found by the virtual work principle through exact integrations using the software "Derive" to obtain some results. The traditional model takes into account only bending deformations, and others authors present tables considering the bending deformations and shear, but are restricted. A comparison between the traditional model and the proposed model is made to observe differences, and an example of structural analysis of a continuous highway bridge under live load is resolved. Besides the effectiveness and accuracy of the developed models, a significant advantage is that fixed-end moments are calculated for any cross section of the beam "I" using the mathematical formulas.

The Study on Driving Characteristics of Crane Wheel Shape (크레인 휠 형상에 따른 구동 특성에 관한 연구)

  • 이형우;이성섭;박찬훈;박경택;이만형
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.185-195
    • /
    • 2000
  • This pacer studied on the lateral motion and yaw motion of the gantry crane which is used for the automated container terminal with two driving wheel types. Though several problems are occcurred in driving of gantry crane, they are solved by the motion by the operators. But, if the gantry crane is unmanned, it is automatically controlled without any operation. There are two types, cone and flat t y pin driving wheel shape. In cone type, lateral vibration and yaw motion of crane are issued. In flat type, the collision between wheel-flange and rail or the fitting between wheel-flanges and rail is issued. Especially, the collision between wheel-flange and rail is a very critical problem in driving of unmanned gantry crane. To bring a solution to the problems, the lateral and yaw dynamic equations of the driving mechanism of gantry crane with two driving wheel types are derived. Then, we investigate the driving characteristics of gantry crane. And this study used PD(Proportional-Derivative) Controller to control the lateral displacement and yaw angle of the gantry crane. The simulation result of the driving mechanism using the Runge-Kutta Method is presented in this paper.

  • PDF

Theoretical Study of Design Parameters for the Thermal Stress in Engine Exhaust Manifold (엔진 배기매니폴드의 열응력 발생에 관한 설계 인자들의 이론적 연구)

  • Choi, Bok-Lok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.1
    • /
    • pp.50-56
    • /
    • 2007
  • Exhaust manifold is generally subjected to thermal cycle loadings ; at hot condition, large compressive plastic deformations are generated, and at cold condition, tensile stresses are remained in highly deformed critical zones. These phenomena originate from the fact that thermal expansions of the runners are restricted by inlet flange clamped to the cylinder head, because the former is less stiff than the latter and, the temperature of the inlet flange is lower than that of the runners. Since the failure of an exhaust manifold is mainly caused by geometric constraints between the cylinder head and the manifold, the thermal stress can be controlled by geometric factors. The generic geometric factors include the inter distance (2R), the distance from the head to the outlet (L), the tube diameter(d) and the tube thickness (t). This criteria based on elastic analysis up to onset of yield apparently indicate that the pre-stress also reduces the factor; however, high temperature relaxation may reduce this effect at later operation stage.

  • PDF

Shear-bending interaction strength of locally buckled I-sections

  • El Aghoury, M.;Hanna, M.T.
    • Steel and Composite Structures
    • /
    • v.8 no.2
    • /
    • pp.145-158
    • /
    • 2008
  • In slender sections there is a substantial post-buckling strength provided after the formation of local buckling waves. These waves happened due to normal stresses or shear stresses or both. In this study, a numerical investigation of the behavior of slender I-section beams in combined pure bending and shear has been described. The studied cases were assumed to be prevented from lateral torsional buckling. To achieve this aim, a finite element model that simulates the geometric and material nonlinear nature of the problem has been developed. Moreover, the initial geometric imperfections were included in the model. Different flange and web width-thickness ratios as well as web panel aspect ratios have been considered to draw complete set of interaction diagrams. Results reflect the interaction behavior between flange and web in resisting the combined action of moments and shear. In addition, the web panel aspect ratio will not significantly affect the combined ultimate shear-bending strength as well as the post local buckling strength gained by the section. Results are compared with that predicted by both the Eurocode 3 and the American Iron and Steel specifications, AISI-2001. Finally, an empirical interaction equation has been proposed.

Parametric study on the structural behaviour of composite slim floors with hollow-core slabs

  • Spavier, Patricia T.S.;Kataoka, Marcela N.;El Debs, Ana Lucia H.C.
    • Computers and Concrete
    • /
    • v.28 no.5
    • /
    • pp.497-506
    • /
    • 2021
  • Steel-concrete composite structures and precast concrete elements have a common prefabrication process and allow fast construction. The use of hollow-core slabs associated with composite floors can be advantageous. However, there are few studies on the subject, impeding the application of such systems. In this paper, a numerical model representing the considered system using the FE (finite element)-based software DIANA is developed. The results of an experimental test were also presented in Souza (2016) and were used to validate the model. Comparisons between the numerical and test results were performed in terms of the load versus displacement, load versus slip, and load versus strain curves, showing satisfactory agreement. In addition, a wide parametric study was performed, evaluating the influence of several parameters on the behaviour of the composite system: The strength of the steel beam, thickness of the web, thickness and width of the bottom flange of the steel beam and concrete cover thickness on top of the beam. The results indicated a great influence of the steel strength and the thickness of the bottom flange of the steel beam on the capacity of the composite floor. The remaining parameters had limited influences on the results.

A Study on the strength evaluation for T-type Composite Beam (T형 합성보의 내력평가에 관한 연구)

  • Kim, Sang Mo;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.4 s.65
    • /
    • pp.467-474
    • /
    • 2003
  • Composite action can be achieved by providing shear connectors between the steel top flange and concrete topping. Composite sections are stiffer than the sum of the individual stiffness of slab and beam. They can therefore carry heavier loads or similar loads with appreciably smaller deflection. They are also less prone to transient vibration. In this study, T-type Steel Composite beam (TSC-beam) was developed and tested. The test results of TSC beam were compared with the theoretical results based on composite actions.

A Study on Nonlinear FEM Analysis for the Effective Widths of T-shaped Structural Walls with Different Aspect Ratios (형상비가 다른 T형벽체의 유효폭 산정을 위한 비선형 FEM 해석)

  • 조남선;하상수;오영훈;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.67-74
    • /
    • 2001
  • In domestic, irregular walls such as T, L, H and Box shapes are considered as rectangular wall in the design of bearing wall apartment building. The strengths of walls, therefore, can be underestimated in case of using the current design process. Irregular walls are connected to each other as rigid joint so that part of the load can be resisted by the wall perpendicular to the load direction. This resistance can be caused by the effective width of perpendicular wall. This additional resistance by the perpendicular wall increases the strength of structural walls. The objective of this study is to evaluate the effective widths of flanged walls with different aspect ratios by using FEM analyses. the results from finite element method are compared with effective flange widths of some code provisions.

  • PDF

Stamping of Side Panel Using the Tailored Blank (Tailored Blank를 이용한 Side Panel 성형)

  • 권재욱;명노훈;백승엽;인정제;이경돈;유순영;이영국
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.06a
    • /
    • pp.102-109
    • /
    • 1998
  • In this study, the side panels were developed using the laser-welded Tailored Blanks (TB) with both the same thickness and the different thickness. At first, the formability of the same thickness T.B was investigated to be compared with one of the non welded panel with respect to weldline movements and strain distribution on blank during the stamping. Based on these results, we selected candidates of T.B with different thickness for stamping experiments. That is, we determined the weld line positions and the die step. Then we made some stamping tryouts with selected types of blank designs to investigate the formability of T.B with different thickness. During the tryouts, the wrinkles were found in the a-pillar lower region which is under the deformation mode of the shrink flange. In the b-pillar region, the fractures were found also, these defects have been reduced and corrected by controlling the blank design and the die faces and process pamameters.