• Title/Summary/Keyword: T-element

Search Result 2,311, Processing Time 0.027 seconds

Development of 8-node Flat Shell Element for the Analysis of Folded Plate Structures (절판 구조물의 해석을 위한 8절점 평면 첼 요소의 개발)

  • 최창근;한인선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.234-241
    • /
    • 1999
  • In this study, an improved 8-node flat shell element is presented for the analysis of shell structure, by combining 8-node membrane element with drilling degree-of-freedom and 8-node plate bending element based on the recently presented technique. Firstly, 8-node membrane element designated as CLM8 is presented in this paper. The element has drilling degree-of.freedom in addition to transitional degree-of-freedom. Therefore the element possesses 3 degrees-of-freedom per each node which as well as the improvement of the element behavior, permits an easy connection to other element with rotational degree-of -freedom. Secondly. 8-node flat shell element was composed by adding 8-node Mindlin plate bending element to the membrane element. The behavior of the introduced plate bending element is further improved by combined use of nonconforming displacement modes, selectively reduced integration scheme and assumed shear strain fields. The element passes in the patch test, doesn't show spurious mechanism and doesn't produce shear locking phenomena. Finally, Numerical examples are presented to show the performance of flat shell element developed in the present study.

  • PDF

Nonlinear finite element analysis of torsional R/C hybrid deep T-beam with opening

  • Lisantono, Ade
    • Computers and Concrete
    • /
    • v.11 no.5
    • /
    • pp.399-410
    • /
    • 2013
  • A nonlinear finite element analysis of R/C hybrid deep T-beam with web opening subjected to pure torsion is presented. Hexahedral 8-nodes and space truss element were used for modeling concrete and reinforcement. The reinforcement was assumed perfectly bonded to the corresponding nodes of the concrete element. The constitutive relations for concrete and reinforcement are based on the modified field theory and elastic perfectly plastic. The smear crack approach was adopted for modeling the crack. The torque-twist angle relationship curve based on the finite element analysis was compared to the experimental results. The comparison shows that the curve of torque-twist angle predicted by the nonlinear finite element analysis is linear before cracking and close to the experimental result. After cracking, the curve becomes nonlinear and stiffer compared to the experimental result.

Inelastic Analyses and Simplified Equations for Improved T-stub Element Used at Semi-Rigid Connections (반강접 접합부의 요소인 개량 T-stub의 비탄성 해석과 약산식)

  • Cho, Jae Chul;Kim, Won Ki;Lee, Myung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.3 s.40
    • /
    • pp.271-279
    • /
    • 1999
  • Recently, studies on semi-rigid beam-to-column connections have been done to develop a T-stub element with separators between column face and T-stub flange. In this paper, inelastic analyses for the improved T-stub element are performed, and their results are compared with existing experimental results. The inelastic analyses using gap elements between column face and the separator, and initial stresses at the high-tension bolts result in good agreement with experimental results. Simplified design methods estimating the initial stiffness and the strength of the semi-rigid connection for compression force are proposed.

  • PDF

An Analysis of the I-t Characteristic of Low Voltage Distribution Line Fuse Using the FEM (유한 요소법을 이용한 저압 배전용 전선퓨즈의 I-t 특성 해석)

  • 황명환;박두기;이세현;한상옥
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.6
    • /
    • pp.74-80
    • /
    • 1997
  • In this paper, we deal with the I -t characteristic of low voltage distribution fuse (line fuse). That fuse element has two parts;One is low temperature melting element(LTME) to put up with over current and the other is high temperature melting element (HTME) which put up with large current. Melting charateristic of fuse is determined by L TME and HTME. So we verified their properties of fuse design, mathematically, by simulating the thermal and electric characteristics of each other. We simulated the I-t characteristic of line fuse by using the numerical method;Finite Element Method(FEM). Then, we could acquire very similar result at the HTME and L TME area when compared the simlation result with experimental one.

  • PDF

Functional Role of the Internal Guide Sequence in Splicing Activity of T4 Thymidylate Synthase Gene in vivo (T4 티미딜산 생성효소 유전자의 Splicing 활성에 있어 Internal Guide Sequence 구조의 기능적 역할)

  • Shin, Sook;Park, In-Kook
    • Korean Journal of Microbiology
    • /
    • v.31 no.3
    • /
    • pp.208-213
    • /
    • 1993
  • The structural and functional roles of IGS element of T4 td intron in thymidylate synthase activity in vivo were investigated Site-directed mutagenesis was employed to crete mutations of IGS element of T4 td intron, When a U-G pari was changed to a U-C pari in the 5' splice site of P1 stem of td intron, the activity of thymidylate synthase was completely abolished whereas the wild type retained the normal activity of enzyme. When U at 12 position within IGS element was changed to C, the activity of thymidylate synthase was approximately 32% of that of the wild type. Comparison of enzyme activities suggests that IGS element within P1 structure is an essential requirement for splicing of td gene in vivo.

  • PDF

Evaluation of T-stress for cracks in elastic sheets

  • Su, R.K.L.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.3
    • /
    • pp.335-346
    • /
    • 2005
  • The T-stress of cracks in elastic sheets is solved by using the fractal finite element method (FFEM). The FFEM, which had been developed to determine the stress intensity factors of cracks, is re-applied to evaluate the T-stress which is one of the important fracture parameters. The FFEM combines an exterior finite element model with a localized inner model near the crack tip. The mesh geometry of the latter is self-similar in radial layers around the tip. The higher order Williams series is used to condense the large numbers of nodal displacements at the inner model near the crack tip to a small set of unknown coefficients. Numerical examples revealed that the present approach is simple and accurate for calculating the T-stresses and the stress intensity factors. Some errors of the T-stress solutions shown in the previous literature are identified and the new solutions for the T-stress calculations are presented.

A locally refinable T-spline finite element method for CAD/CAE integration

  • Uhm, Tae-Kyoung;Kim, Ki-Seung;Seo, Yu-Deok;Youn, Sung-Kie
    • Structural Engineering and Mechanics
    • /
    • v.30 no.2
    • /
    • pp.225-245
    • /
    • 2008
  • T-splines are recently proposed mathematical tools for geometric modeling, which are generalizations of B-splines. Local refinement can be performed effectively using T-splines while it is not the case when B-splines or NURBS are used. Using T-splines, patches with unmatched boundaries can be combined easily without special techniques. In the present study, an analysis framework using T-splines is proposed. In this framework, T-splines are used both for description of geometries and for approximation of solution spaces. This analysis framework can be a basis of a CAD/CAE integrated approach. In this approach, CAD models are directly imported as the analysis models without additional finite element modeling. Some numerical examples are presented to illustrate the effectiveness of the current analysis framework.

The 3D Surface Crack-Front Constraints in Welded Joins (용접부 3차원 표면균열선단에서의 구속상태)

  • Lee, Hyeong-Il;Seo, Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.144-155
    • /
    • 2000
  • 초록 The validity, of a single parameter such as stress intensity, factor K or J-integral in traditional fracture mechanics depends strongly on the geometry, and loading condition. Therefore the second parameter like T-stress measuring the stress constraint is additionally needed to characterize the general crack-tip fields. While many, research works have been done to verify, the J-T description of elastic-plastic crack-tip stress fields in plane strain specimens, limited works (especially. for bimaterials) have been performed to describe the structural surface crack-front stress fields with the two parameters. On this background, via detailed three dimensional finite element analyses for surface-cracked plates and straight pipes of homogeneous materials and bimaterials under various loadings, we investigate the extended validity or limitation of the two parameter approach. We here first develop a full 3D mesh generating program for semi-elliptical surface cracks, and calculate elastic T-stress from the obtained finite element stress field. Comparing the J-T predictions to the elastic-plastic stresses from 3D finite element analyses. we then confirm the extended validity of fracture mechanics methodology based on the J-T two parameters in characterizing the surface crack-front fields of welded plates and pipes under various loadings.

Dynamic instability analysis of laminated composite stiffened shell panels subjected to in-plane harmonic edge loading

  • Patel, S.N.;Datta, P.K.;Sheikh, A.H.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.4
    • /
    • pp.483-510
    • /
    • 2006
  • The dynamic instability characteristics of laminated composite stiffened shell panels subjected to in-plane harmonic edge loading are investigated in this paper. The eight-noded isoparametric degenerated shell element and a compatible three-noded curved beam element are used to model the shell panels and the stiffeners respectively. As the usual formulation of degenerated beam element is found to overestimate the torsional rigidity, an attempt has been made to reformulate it in an efficient manner. Moreover the new formulation for the beam element requires five degrees of freedom per node as that of shell element. The method of Hill's infinite determinant is applied to analyze the dynamic instability regions. Numerical results are presented to demonstrate the effects of various parameters like shell geometry, lamination scheme, stiffening scheme, static and dynamic load factors and boundary conditions, on the dynamic instability behaviour of laminated composite stiffened panels subjected to in-plane harmonic loads along the boundaries. The results of free vibration and buckling of the laminated composite stiffened curved panels are also presented.

Comparison of ECT Probes in Diagnosis of Defects

  • Mun, Ho-Young;Kim, Chang-Eob
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.190-196
    • /
    • 2014
  • In this paper, the characteristics of a defective elliptical aluminum plate are analyzed by three different eddy current testing probes; T/R, T/T, and Impedance probes. The analysis was done by 3D finite element method, and the impedance change of real and imaginary voltage values were analyzed.