• Title/Summary/Keyword: T-cell immunomodulatory protein

Search Result 18, Processing Time 0.027 seconds

Gene Therapy Using GM-CSF Gene Transferred by a Defective Infectious Single-cycle Herpes Virus in Micro-residual Organotropic Head and Neck Squamous Cell Cancer Model (향장기성 두경부 편평세포암종의 미세잔존암 모델에서 GM-CSF 유전자를 이입시킨 제한복제성 헤르페스바이러스 벡터를 이용한 종양백신의 유전자 치료)

  • Kim Se-Heon;Choi Eun-Chang;Kim Han-Su;Chang Jung-Hyun;Kim Ji-Hoon;Kim Kwang-Moon
    • Korean Journal of Head & Neck Oncology
    • /
    • v.19 no.1
    • /
    • pp.25-33
    • /
    • 2003
  • Background and Objectives: The Herpes Simplex type 2 Defective Infectious Single Cycle virus (DISC virus) is attenuated virus originally produced as viral vaccines but are also efficient gene transfer vehicle. The main goals of this study were to examine the efficiencies of the gene transfer using DISC vectors for various head and neck squamous cell carcinoma cell lines and to evaluate the efficacy of vaccination with DISC virus carrying a immunomodulatory genes (GM-CSF) as cancer therapy in a organotopic oral cavity squamous cell cancer model. Materials and Methods : We determinated the gene transfer efficiency of DISC virus by x-gal stain method and proved gene and protein expression of DISC-GMCSF transfected SCCVII cells by RT-PCR and ELISA method. Also we evaluated the ex vivo vaccination effects of SCCVII/GMCSF (DISC-GMCSF transfected SCCVII vaccine) vaccine on preventing the recurrence of micro-residual tumor. After the vaccination of SCCVII/GMCSF, specific cytotoxic T-cell responses was evaluated by CTL assay. Results: At an MOI of 10 DISC virus showed 64-88% of transfection rates in various head and neck squamous cancer cell lines. SCCVII cells transduced by DISC virus vector (MOI=10) carrying the GM-CSF gene, produced 4.5 nanogram quantities of GM-CSF per $10^6$ cells. In vivo vaccination using tumor cells transduced ex vivo with DISC-GMCSF resulted in better protection rate against subsequent tumor recurrence in organotopic oral cavity cancer model. Although tumor free survival rate was not statistically significantly increased in vaccination group (p=0.078), tumor specific cytotocic T-cell responses were significantly increased in SCCVII/GMCSF vaccination group. Conclusion: These data demonstrate that; 1) The DISC virus vector is capable of efficient gene transfer to various head and neck squamous cancer cell lines, 2) GM-CSF secreting genetically modified tumor vaccine (SCCVII/GMCSF) efficiently protected against tumor recurrence in organotopic micro-residual oral cavity cancer model and produced tumor specific cytotoxic T-cell response. DISC virus-mediated, cytokine gene transfer may prove to be useful as a clinical therapy for head and neck cancers.

Ginsenoside fractions regulate the action of monocytes and their differentiation into dendritic cells

  • Lee, Yeo Jin;Son, Young Min;Gu, Min Jeong;Song, Ki-Duk;Park, Sung-Moo;Song, Hyo Jin;Kang, Jae Sung;Woo, Jong Soo;Jung, Jee Hyung;Yang, Deok-Chun;Han, Seung Hyun;Yun, Cheol-Heui
    • Journal of Ginseng Research
    • /
    • v.39 no.1
    • /
    • pp.29-37
    • /
    • 2015
  • Background: Panax ginseng (i.e., ginseng) root is extensively used in traditional oriental medicine. It is a modern pharmaceutical reagent for preventing various human diseases such as cancer. Ginsenosidesd-the major active components of ginsengd-exhibit immunomodulatory effects. However, the mechanism and function underlying such effects are not fully elucidated, especially in human monocytes and dendritic cells (DCs). Methods: We investigated the immunomodulatory effect of ginsenosides from Panax ginseng root on $CD14^+$ monocytes purified from human adult peripheral blood mononuclear cells (PBMCs) and on their differentiation into DCs that affect $CD4^+$ T cell activity. Results: After treatment with ginsenoside fractions, monocyte levels of tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-6, and IL-10 increased through phosphorylation of extracellular signal-regulated kinase (ERK)1/2 and c-Jun N-terminal kinase (JNK), but not p38 mitogen-activated protein kinase (MAPK). After treatment with ginsenoside fractions, TNF-${\alpha}$ production and phosphorylation of ERK1/2 and JNK decreased in lipopolysaccharide (LPS)-sensitized monocytes.We confirmed that DCs derived from $CD14^+$ monocytes in the presence of ginsenoside fractions (Gin-DCs) contained decreased levels of the costimulatory molecules CD80 and CD86. The expression of these costimulatory molecules decreased in LPS-treated DCs exposed to ginsenoside fractions, compared to their expression in LPS-treated DCs in the absence of ginsenoside fractions. Furthermore, LPS-treated Gin-DCs could not induce proliferation and interferon gamma (IFN-${\gamma}$) production by $CD4^+$ T cells with the coculture of Gin-DCs with $CD4^+$ T cells. Conclusion: These results suggest that ginsenoside fractions from the ginseng root suppress cytokine production and maturation of LPS-treated DCs and downregulate $CD4^+$ T cells.

GENE EXPRESSION CHARACTERISTICS OF PUTATIVE PROINFLAMMATORY CYTOKINES AND RECEPTOR MOLECULE CLONING (Putative proinflammatory cytokine유전자의 발현양상과 수용체 분자의 cloing)

  • Oh, Kwi-Ok;Song, Yo-Han;Seo, Young-Seok;Lee, Dong-Whan;Moon, Dae-Hee;Kim, Hyung-Seop
    • Journal of Periodontal and Implant Science
    • /
    • v.24 no.3
    • /
    • pp.472-482
    • /
    • 1994
  • Cytokines expressed specifically in leukocytes subsets and in activated cells, which are involved in chemotaxis and activation of leukocytes, are recently defined as chemokines. Macrophage inflammatory $protein-1{\alpha}(MIP-1{\alpha})$ and $MIP-1{\beta}$ are members of C-C chemokine subfamily which produces wide immunomodulatory, proinflammatory, and hematopoietic modulatory actions. We have studied their gene expression by using Northern blot analysis in various blood cells such as cytolytic T lymphocyte(CTL), helper T lymphocyte(HTL), macrophage, and B lymphocyte. Resting CTL line CTLL-R8 expressed $MIP-1{\alpha}$ mRNA which was downregulated by ConA stimulation. Both of resting and ConA stimulated HTL line Hut78 and Jurkat did not express $MIP-1{\alpha}$ mRNA. There was detectable $MIP-1{\alpha}$ transcript in HTL hybridoma 2B4.11 which was a little upstimulated by ConA stimulation. B cell line 230, and macrophage cell line RAW264.7 and WR19M.1 showed distinct $MIP-1{\alpha}$ message which were induced after LPS stimulation. Expression pattern of $MIP-1{\beta}$ in all cell lines or cell were almost identical to that of $MIP-1{\alpha}$. Also strategies employed to identify and characterize the biological functions was preceded by receptor cloning to trace the shorcut to the final goal of cytokine research. For the cloning of $MIP-1{\alpha}$ receptor(R), we used synthetic oligonucleotides of transmembrane(T) conserved sequences of already cloned human(h) IL-8-R, and performed reverse transcription-polymerase chain reaction(RT-PCR) amplification using murine(m) macrophage cell line mRNA. Among 5RT-PCR products, we isolated a homologous cDNA with hIL-8-R which were shown to be putative mIL-8-R cDNA.

  • PDF

Gender-independent efficacy of mesenchymal stem cell therapy in sex hormone-deficient bone loss via immunosuppression and resident stem cell recovery

  • Sui, Bing-Dong;Chen, Ji;Zhang, Xin-Yi;He, Tao;Zhao, Pan;Zheng, Chen-Xi;Li, Meng;Hu, Cheng-Hu;Jin, Yan
    • Experimental and Molecular Medicine
    • /
    • v.50 no.12
    • /
    • pp.12.1-12.14
    • /
    • 2018
  • Osteoporosis develops with high prevalence in both postmenopausal women and hypogonadal men. Osteoporosis results in significant morbidity, but no cure has been established. Mesenchymal stem cells (MSCs) critically contribute to bone homeostasis and possess potent immunomodulatory/anti-inflammatory capability. Here, we investigated the therapeutic efficacy of using an infusion of MSCs to treat sex hormone-deficient bone loss and its underlying mechanisms. In particular, we compared the impacts of MSC cytotherapy in the two genders with the aim of examining potential gender differences. Using the gonadectomy (GNX) model, we confirmed that the osteoporotic phenotypes were substantially consistent between female and male mice. Importantly, systemic MSC transplantation (MSCT) not only rescued trabecular bone loss in GNX mice but also restored cortical bone mass and bone quality. Unexpectedly, no differences were detected between the genders. Furthermore, MSCT demonstrated an equal efficiency in rectifying the bone remodeling balance in both genders of GNX animals, as proven by the comparable recovery of bone formation and parallel normalization of bone resorption. Mechanistically, using green fluorescent protein (GFP)-based cell-tracing, we demonstrated rapid engraftment but poor inhabitation of donor MSCs in the GNX recipient bone marrow of each gender. Alternatively, MSCT uniformly reduced the $CD3^+T$-cell population and suppressed the serum levels of inflammatory cytokines in reversing female and male GNX osteoporosis, which was attributed to the ability of the MSC to induce T-cell apoptosis. Immunosuppression in the microenvironment eventually led to functional recovery of endogenous MSCs, which resulted in restored osteogenesis and normalized behavior to modulate osteoclastogenesis. Collectively, these data revealed recipient sexually monomorphic responses to MSC therapy in gonadal steroid deficiency-induced osteoporosis via immunosuppression/anti-inflammation and resident stem cell recovery.

Isolation and Characterization of Immunomodulatory Glycoprotein from the Root of Panax ginseng

  • Shin, Han-Jae;Park, Kyeong-Mee;Kim, Young-Sook;Nam, Ki-Yeul;Lee, You-Hui;Park, Jong-Dae
    • Journal of Ginseng Research
    • /
    • v.24 no.3
    • /
    • pp.128-133
    • /
    • 2000
  • A high molecular (more than 10 kDa) fraction, showing mitogenic and comitogenic activities in spleen cells of mouse, was isolated from water extract of ginseng. The crude protein substance prepared by 80% (NH$_4$)$_2$SO$_4$ precipitation from this fraction was purified and isolated by DEAE Sepharose column chromatography. Among the fractions eluted, it was found that four kinds of fractions eluted with 0 to 1 M NaCl gradient were glycoproteins, which induced proliferation of spleen cells and increased NO production in macrophages. Among them, F-2 fraction, which contained 35.9% protein,49.4% neutral sugar and 12.5% uronic acid, was found to show mitogenic activity as strong as that of LPS (lipopolysaccharide) at a concentration of 100 $\mu\textrm{g}$/ml and to remarkably stimulate NO production by murine macrophages at a concentration of 500 $\mu\textrm{g}$/ml. When F-2 is deproteinized, the mitogenic activity of F-2 was decreased significantly to 70.9% as compared with that of F-2. This results suggests that the protein moiety of F-2 may play an important role in immunomodulating activity of glycoprotein from the root of Panax ginseng.

  • PDF

Indigo Naturalis in Inflammatory Bowel Disease: mechanisms of action and insights from clinical trials

  • Hyeonjin Kim;Soohyun Jeong;Sung Wook Kim;Hyung-Jin Kim;Dae Yong Kim;Tae Han Yook;Gabsik Yang
    • Journal of Pharmacopuncture
    • /
    • v.27 no.2
    • /
    • pp.59-69
    • /
    • 2024
  • This study investigates the therapeutic potential of Indigo Naturalis (IN) in treating a Inflammatory Bowel Disease (IBD). The objective is to comprehensively examine the effects and pharmacological mechanisms of IN on IBD, assessing its potential as an novel treatment for IBD. Analysis of 11 selected papers is conducted to understand the effects of IN, focusing on compounds like indirubin, isatin, indigo, and tryptanthrin. This study evaluates their impact on Disease Activity Index (DAI) score, colon length, mucosal damage, and macrophage infiltration in Dextran Sulfate Sodium (DSS)-induced colitis mice. Additionally, It investigate into the anti-inflammatory mechanisms, including Aryl hydrocarbon Receptor (AhR) pathway activation, Nuclear Factor kappa B (NF-κB)/nod-like receptor family pyrin domain containing 3 (NLRP3)/Interleukin 1 beta (IL-1β) inhibition, and modulation of Toll-like receptor 4 (TLR4)/myeloid differentiation primary response 88 (MYD88)/NF-κB and Mitogen Activated Protein Kinase (MAPK) pathways. Immunomodulatory effects on T helper 17 (Th17)/regulatory T cell (Treg cell) balance and Glycogen synthase kinase-3 beta (GSK3-β) expression are also explored. Furthermore, the study addresses the role of IN in restoring intestinal microbiota diversity, reducing pathogenic bacteria, and increasing beneficial bacteria. The findings reveal that IN, particularly indirubin and indigo, demonstrates significant improvements in DAI score, colon length, mucosal damage, and macrophage infiltration in DSS-induced colitis mice. The anti-inflammatory effects are attributed to the activation of the AhR pathway, inhibition of inflammatory pathways, and modulation of immune responses. These results exhibit the potential of IN in IBD treatment. Notably, the restoration of intestinal microbiota diversity and balance further supports its efficacy. IN emerges as a promising and effective treatment for IBD, demonstrating anti-inflammatory effects and positive outcomes in preclinical studies. However, potential side effects necessitate further investigation for safe therapeutic development. The study underscores the need for future research to explore a broader range of active ingredients in IN to enhance therapeutic efficacy and safety.

Sorghum Extract Enhances Caspase-dependent Apoptosis in Primary Prostate Cancer Cells and Immune Activity in Macrophages (수수 추출물에 의한 primary 전립선 암세포의 caspase 의존성 apoptosis 유도 및 대식세포 면역활성 증가)

  • Cho, Hyun-Dong;Kim, Jeong-Ho;Hong, Seong-Min;Lee, Ju-Hye;Lee, Yong-Seok;Kim, Du-Hyun;Seo, Kwon-Il
    • Journal of Life Science
    • /
    • v.26 no.12
    • /
    • pp.1431-1437
    • /
    • 2016
  • Sorghum bicolor L. is one of the important minor cereals in Asia, Africa, and the central United States, and it is considered a rich source of polyphenols, flavonoids, and dietary fiber. However, there is a lack of data on the anti-cancer activity of Sorghum in prostate cancer cells and immune activity in macrophages. This study aims to investigate the potential effects of an ethanol extract of S. bicolor L. (SE) on inducing apoptosis in RC-58T/h/SA#4 cells and immunomodulatory activity in RAW 264.7 cells. SE significantly inhibited the viability of RC-58T/h/SA#4 primary prostate cancer cells in a dose-dependent manner. The morphology of RC-58T/h/SA#4 cells treated with SE was shrunken and involved the formation of an apoptotic body and nuclear condensation. In addition, SE markedly activated caspase-8, -9, and -3; increased the protein levels of Bax, p53, cleaved PARP, and cytosolic cytochrome c; and decreased Bcl-2 protein expression. Furthermore, the inhibition of caspases in RC-58T/h/SA#4 cells with z-VAD-fmk attenuated SE-induced cell growth inhibition. The production of nitric oxide (NO) was also elevated by SE treatment, as revealed by immune response parameters. These results suggest that SE inhibits growth and induces apoptosis in primary human prostate cancer cells in a caspase-dependent manner, and it modulates the immune functions in macrophages. Therefore, Sorghum bicolor L. may be used as a functional food to prevent prostate cancer and enhance immune activity.

Expression of COX-2 and IDO by Uteroglobin Transduction in NSCLC Cell Lines (비소세포폐암 세포주에서 Uteroglobin Transduction이 COX-2 및 IDO의 발현에 미치는 영향)

  • Park, Gun Min;Lee, Sang-Min;Yim, Jae-Joon;Yang, Seok-Chul;Yoo, Chul Gyu;Lee, Choon-Taek;Han, Sung Koo;Sim, Young-Soo;Kim, Young Whan
    • Tuberculosis and Respiratory Diseases
    • /
    • v.66 no.4
    • /
    • pp.274-279
    • /
    • 2009
  • Background: Uteroglobin (UG) is a secretary protein that has strong immunomodulatory properties, and which is synthesized in most epithelia including lung tissue. Overexpression of UG is associated with decreased expression of cyclooxygenase (COX)-2 and suppression of cancer cell growth. Indoleamine 2,3-dioxygenase (IDO) catalyzes tryptophan along the kynurenine pathway, and both the reduction in local tryptophan and the production of tryptophan metabolites contribute to the immunosuppressive effects of IDO. Methods: In this study, we investigated the pattern of expression of COX-2 and IDO, and the effect of UG transduction in the expression of COX-2 and IDO in several non-small cell lung cancer cell lines, especially A549. Results: Both COX-2 and IDO were constitutionally expressed in A549 and H460 cells, and was reduced by UG transduction. In A549 cells, the slightly increased expression of COX-2 and IDO with the instillation of interferon-gamma (IFN-$\gamma$) was reduced by UG transduction. However, the reduced expression of COX-2 and IDO by UG transduction was not increased with IFN-$\gamma$ instillation in A549 cells. In both the A549 COX-2 sense and the A549 COX-2 anti-sense small interfering RNA (siRNA)-transfected cells, IDO was expressed; expression was reduced by UG transduction, irrespective of the expression of COX-2. Conclusion: The results suggest that the anti-proliferative function of UG may be associated with the immune tolerance pathway of IDO, which is independent of the COX-2 pathway.