• Title/Summary/Keyword: T-S 퍼지논리

Search Result 6, Processing Time 0.022 seconds

Forecasting of the water quality in Youngsan river using by GA and T-S Fuzzy system (GA와 T-S 퍼지시스템에 의한 영산강 수질 예측)

  • Park, Sung Chun;Oh, Chang Ryol;Kim, San Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1381-1384
    • /
    • 2004
  • 대상 지점의 수질 예측은 단순한 모델로 설명하는데 쉽지 않을 뿐만 아니라 많은 오차를 내포하고 있다. 그러나 최근, 신경회로망, 퍼지 논리, 전문가 시스템 및 유전자 알고리즘과 같은 인공지능이 대두되면서 복잡한 비선형 과정들을 나타낼 수 있게 되었다. 나아가 진정한 인공 지능을 실현하기 위해서는 신경회로망, 퍼지 논리, 전문가 시스템 및 유전자 알고리즘을 보다 효과적으로 이용하고 통합해야 가능할 것으로 기대된다. 본 연구에서는 유전자 알고리즘(Genetic Algorithm)을 T-S 퍼지시스템(Takagj-Sugeno Fuzzy system)의 삼각형 멤버쉽 함수 형태와 규칙 베이스를 최적화하기 위한 도구로 사용하였으면, 예측은 T-S 퍼지 시스템을 이용하여 실시하였다. 대상지점은 영산강 유역의 나주지점을 선정하여 유량자료 및 수질자료를 이용하여 GA와 T-S 퍼지 시스템의 결합에 의해 수질 예측을 실시할 결과 돌연변이율$(P_m)$ $0.05\~0.1$에서 우수한 결과를 얻을 수 있었다.

  • PDF

A Study on the Design of Fuzzy Controller for a Turbojet Engine Model and its Performance Enhancement through Satisfactory Multiple Objectives (터보제트엔진의 퍼지제어기 설계 및 다목적함수 만족기법을 통한 제어성능 향상에 관한 연구)

  • Han,Dong-Ju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.6
    • /
    • pp.61-71
    • /
    • 2003
  • In the study of control technique for a turbojet engine model, the Takagi-Sugeno fuzzy logic controller has been designed based on the model identification by the well designed PI controlled system through T-S neuro-fuzzy inference system. To enhance this designed controller, those procedures are proposed that certainty factors are adopted to each rule of objective groups which are classified by the fuzzy C-Means algorithm and the satisfaction degrees are matched to meet the objectives. This proposed technique shows its feasibility by upgrading performances of the previously well-designed T-S fuzzy controller.

Sampled-Data Fault Detection Observer Design of Takagi-Sugeno Fuzzy Systems (타카기-수게노 퍼지 시스템을 위한 샘플치 고장검출 관측기 설계)

  • Jee, Sung Chul;Lee, Ho Jae;Kim, Do Wan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.1
    • /
    • pp.65-71
    • /
    • 2013
  • In this paper, we address fault detection observer design problem of T-S fuzzy systems with sensor fault. To detect fault, T-S fuzzy model-based observer is used. By introducing $\mathfrak{H}$_ performance index, an observer is designed as sensitive to fault as possible. The fault is then detected by a fault decision logic. The design conditions are derived in terms of linear matrix inequalities. An illustrative example is provided to verify the effectiveness of the proposed fault detection technique.

A Study for Autonomous Intelligence of Computer-Generated Forces (가상군(Computer-Generated Forces)의 자율지능화 방안 연구)

  • Han, Chang-Hee;Cho, Jun-Ho;Lee, Sung-Ki
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.1
    • /
    • pp.69-77
    • /
    • 2011
  • Modeling and Simulation(M&S) technology gets an attention from various parts such as industry and military. Especially, military uses the technology to cope with a different situation from the one in the Cold War and maximize the effect of training against the cost in the new environment. In order for the training based on M&S technology to be effective, the situations of a battlefield and a combat must be more realistically simulated. For this, a technique development on Computer-Generated Forces(CGF) which represents a unit's simulation logic and a human's simulated behaviors is focused. The CGF simulating a human's behaviors can be used in representing an enemy force, experimenting behaviors in a future war, and developing a new combat idea. This paper describes a methodology to accomplish Computer-Generated Forces' autonomous intelligence. It explains the process of applying a task behavior list based on the METT+T element onto CGFs. On the other hand, in the domain knowledge of military field manual, fuzzy facts such as "fast" and "sufficient" whose real values should be decided by domain experts can be easily found. In order to efficiently implement military simulation logics involved with such subjectivity, using a fuzzy inference methodology can be effective. In this study, a fuzzy inference methodology is also applied.

Design of Fuzzy Logic Controller for an Switched Reluctance Motor Variable Speed Drive (스위치드 릴럭턴스 전동기의 가변속 구동을 위한 퍼지제어기 설계)

  • 최재동;황영성;오성업;성세진
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.3
    • /
    • pp.240-248
    • /
    • 1999
  • This paper presents the application of fuzzy algorithm for speed control of Switched Reluctance Motor. SRM has a h highly nonlinear control characteristic and operates in saturation to maximize the motor torque. A systematic approach t to the modeling of highly nonlinear SRM drive system which includes the fuzzy controller with coarse control and fine C control is presented. PelfOlmance analysis of SRM dJive is reported for a wide range of operating conditions through s speed variation and load perturbation dynamics. The pelfOlmance indices of SRM drive system operating with fuzzy 1 logic controller are compared with the conventional controller to highlight the merits. The expel1mental results are p presented to confilm the validity of proposed fuzzy 10밍c controller.

  • PDF

Realization of Intelligence Controller Using Genetic Algorithm.Neural Network.Fuzzy Logic (유전알고리즘.신경회로망.퍼지논리가 결합된 지능제어기의 구현)

  • Lee Sang-Boo;Kim Hyung-Soo
    • Journal of Digital Contents Society
    • /
    • v.2 no.1
    • /
    • pp.51-61
    • /
    • 2001
  • The FLC(Fuzzy Logic Controller) is stronger to the disturbance and has the excellent characteristic to the overshoot of the initialized value than the classical controller, and also can carry out the proper control being out of all relation to the mathematical model and parameter value of the system. But it has the restriction which can't adopt the environment changes of the control system because of generating the fuzzy control rule through an expert's experience and the fixed value of the once determined control rule, and also can't converge correctly to the desired value because of haying the minute error of the controller output value. Now there are many suggested methods to eliminate the minute error, we also suggest the GA-FNNIC(Genetic Algorithm Fuzzy Neural Network Intelligence Controller) combined FLC with NN(Neural Network) and GA(Genetic Algorithm). In this paper, we compare the suggested GA-FNNIC with FLC and analyze the output characteristics, convergence speed, overshoot and rising time. Finally we show that the GA-FNNIC converge correctly to the desirable value without any error.

  • PDF