• Title/Summary/Keyword: T-P Removal

Search Result 691, Processing Time 0.027 seconds

T-P Removal Efficiency According to Coagulant Dosage and Operating Cost Analysis (응집제 투입에 따른 인 제거 효율 및 운영비용 분석)

  • Yun, Soyoung;Ryu, Jaena;Oh, Jeill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.8
    • /
    • pp.549-556
    • /
    • 2012
  • T-P removal efficiency was analyzed according to the metal to initial T-P ratio (mole basis) with respect to the samples from different WWTPs having various initial T-P and SS conditions. Also, operating costs were calculated based on the injected coagulant amount and the amount of sludge production. Most experiments were conducted by the standard jar-test protocol. Molar ratio of coagulant dose was varied considerably according to the initial SS concentration range in secondary clarifier effluent samples which had above 0.5 mg/L of initial T-P. Based on 90% T-P removal efficiency, results were: At the initial SS range of below 10 mg/L, Alum (8%) = 11 mol Al/mol P needed and PAC (17%) = 9.6 mol Al/mol P needed; At the initial SS range of above 10 mg/L, Alum (8%) = 3.9 mol Al/mol P needed and PAC (17%) = 3.2 mol Al/mol P needed.

A Study on the Application of Pre-Chemical Treatment on the Decentralized Domestic Wastewater Reclamation System (도시의 분산형 생활오수 재생시스템에 화학적 전처리공정도입에 관한 연구)

  • Lee, Sang-Woo;Park, Young-Mi;Seo, Gyu-Tae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.1
    • /
    • pp.115-121
    • /
    • 2006
  • The purpose of this study was to investigate applicability of pretreatment on the existing biological treatment for domestic wastewater reclamation. From Jar Tests, it was found that optimum dosage of coagulant was PAC 0.5mg/L and $FeCl_3$ 180mg/L for urban sewage. In this study, PAC 0.5mg/L was selected considering sludge production and the amount of coagulant required. In a continuous experiment performed with combining chemical coagulation and biological treatment, a considerable removal efficency was obtained in term of BOD, SS, T-N, T-P and ABS. When the raw sewage was supplied into the pre-chamical treatment facility, the removal of BOD and SS was 48.3% and 81.1%. However T-N removal was very low which means T-N consists of $NH_3-N$ mostly. T-P was almost completely recluced by the chemical addition. The effluent BOD & SS was 57~76 and 21~43mg/L, which could reduce the size of biological treatment facility. From the cost estimation pre-chemical treatment could save around half of the area required for biological treatment with post ceagulation.

The Study on Evaluating Performances of Lab Sacle-Advanced $A_{2}O$ with Changing System Using Biofilm Process (생물막 담체를 이용한 실험실 규모 $A_{2}O$공법의 시스템 변형에 따른 고도처리 성능 평가에 관한 연구)

  • Kim, Min-Sik;Kang, Gu-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.2
    • /
    • pp.209-218
    • /
    • 2012
  • Recently, as reinforced water quality standards for wastewater has been announced, more efficient and more powerful wastewater treatment processes are required rather than the existing activated sludge process. In order to meet this demands, we evaluate Task 1-4 about lab scale $A_{2}O$ process using biofilm media. Task 1, 2, and 3 use 'Module A' which has 4 partitions (Anoxic/Anerobic/Oxic/Oxic). Task 4 uses 'Module B' which has 2 partitions including a denitrification reactor with an Inclined plug flow reactor (IPFR) and a nitrification reactor with biofilm media. The denitrification reactor of Module B is designed to be upward flow using IPFR. The result of evaluating at each Task has shown that attached growth system has better capacity of removal efficiency for organic matter and nitrogen with the exception of phosphorus. Task 4 which has the most outstanding removal efficiency has 90.5% of $BOD_{5}$ removal efficiency, 97.8% of ${NH_4}^{+}-N$ removal efficiency, 65% of T-N removal efficiency and 92% of T-P removal efficiency with additional chemical phosphorus removal system operated at HRT 9hr, Qi:Qir 1:2, and BOD/T-N ratio 2.7.

Evaluation on Odor Removal Performance of Bacteria-Based Odor Reduction Kit for Revetment Blocks (호안블록용 박테리아 기반 악취저감 키트의 악취제거 성능평가)

  • Keun-Hyoek Yang;Ju-Hyun Mun;Ki-Tae Jeong;Hyun-Sub Yoon;Jae-Il Sim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.2
    • /
    • pp.229-238
    • /
    • 2024
  • This study evaluated the odor removal performance of a bacteria-based odor reduction kit. The bacteria used were Rhodobacter capsulatus, Paracoccus limosus, and Brevibacterium hankyongi, which can remove ammonia (NH3), hydrogen sulfide (H2S), total nitrogen (T-P), and total phosphorus (T-N), which are odor pollutants. The materials used were bacteria and porous aggregates (expanded vermiculite, zeolite beads, activated carbon), and the combination of the materials varied depending on the removal mechanism. Materials with a physical adsorption mechanism (zeolite beads and activated carbon) gradually slowed down the concentration reduction rate of odor pollutants (NH3, H2S, T-P, and T-N), and had no further effect on reducing the concentration of odor pollutants after 60 hours. Expanded vermiculite, in which bacteria that remove odors through a bio-adsorption mechanism were immobilized, had a continuous decrease in concentration, and the concentration of odor pollutants reached 0 ppm after 108 hours. As a result, the odor removal performance of materials with physical adsorption mechanisms in actual river water did not meet the odor emission standard required by the Ministry of Environment, while the expanded vermiculite immobilized with bacteria satisfied the odor emission permissible standard and achieved water quality grade 1.

Effect of Rapid Mixing Intensity and Coagulant Dosages on Phosphorus Removal by Coagulation (응집을 이용한 인의 제거에 급속혼화강도 및 응집제 주입량이 미치는 영향)

  • Han, Hyun-Jin;Moon, Byung-Hyun
    • Clean Technology
    • /
    • v.18 no.4
    • /
    • pp.404-409
    • /
    • 2012
  • In this study, the effects of mixing intensity and coagulant dosages on the characteristics of floc growth for phosphorus removal were investigated. The experiments were conducted under Al/P molar ratio of 1.0, 1.5 and 2.0; rapid mixing intensity with G value of 100, 300, and 500 $s^{-1}$. The characteristics of floc growth were measured by flocculation index (FSI) and the removal efficiencies of phosphorus by using different size filters. The removal efficiencies of soluble phosphorus increased as Al/P molar ratio and rapid mixing intensity increased. However, the highest removal efficiencies of T-P were observed at G value of 300 $s^{-1}$. When Al/P molar ratio was lower than 1.0, the value of FSI at G value of 500 $s^{-1}$ was the largest. However, when Al/P ratio was larger than 1.0, the value of FSI at G value 300 $s^{-1}$ was the largest. Effects of mixing intensity and Al/P molar ratio on coagulation for phosphorus removal of synthetic and real wastewater effluent were observed to be similar.

A Study on Treatment of Livestock Wastewater by Sequencing Batch Reactor (연속회본식 반응조를 이용한 축산폐수의 처리에 관한 연구)

  • 박석환;정문식
    • Journal of Environmental Health Sciences
    • /
    • v.18 no.2
    • /
    • pp.62-66
    • /
    • 1992
  • This study was performed to investigate the characteristics of livestock wastewater excepting pig feces and the variation tendency of water quality and the removal efficiency of polluting materials by establishing the sequencing batch reactor in the field.The results were as follows, 1. The characteristics of livestock wastewater as follows: BOD: 619.80, COD$_{cr}$: 782.70, NH$_{3}$-N: 194.20, TKN: 232.81, PO$_{4}$-P: 24.10, T-P: 215.14 (mg/l) 2. During the reaction, negative correlation existed between pH and dissolved oxygen concentration. 3. The removal efficiency of the organic material by the index of BOD and COD was about 90%. 4. Nitrogen removal efficiency was 65.6% by total Kjeldahl nitrogen index, and phosphorous removal efficiency was about 47% by PO$_{4}$-P concentration.

  • PDF

Treatment Characteristics Using Full-Scale SBR System (Full-Scale SBR 공법을 이용한 처리특성)

  • Choo, Tai-Ho;Lee, Yong-Doo;Cho, Yong-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.10
    • /
    • pp.34-40
    • /
    • 2006
  • In this study, the treatment of organic matters and nutrients like Nitrogen and Phosphorus with sequencing batch reactors (SBR) was conducted. The following conclusions can be summarized from the study. The influent BOD concentration was varied 19.6 to 40.0mg/L and the effluent was 3.0 to 14.8mg/L. The variations of BOD removal efficiency during the experimental period was $47.9{\sim}88.4%$ and the average was 80.8%. The average removal efficiency was stabilized with the passage of time. Also the COD concentration was flowed into as $12.2{\sim}32.0mg/L$ and the effluent concentration was varied 3.3 to 18.6 mg/L, and then the average COD removal efficiency was 57.3%(minimun 19.2% and maximum 78.6%). But fortunately, the COD removal efficiency was also stabilized as 70.2% after 79days. In the case of T-N, the influent concentration range was $7.53{\sim}14.99mg/L$ and the effluent concentration was 6.59mg/L(the average removal efficiency was 40.3%) until the first experiment time 79days. But after normalizing the system, it was 4.44mg/L (the average removal efficiency was 56.4%). Also the influent T-P concentration was varied from 0.77 to 1.91mg/L and the effluent concentration was $0.26{\sim}1.53mg/L$. The removal efficiency was varied from 5.3 to 71.7%. considerably, therefore the average removal efficiency was 42.6%. The reason was concluded that the sludge wasn't discharged for increasing MLSS concentration.

  • PDF

Effects of Influent Flow Distribution Ratio and HRT on Sewage Treatment Efficiency of the ASA Process (유입수 분배비와 체류시간이 ASA 공정의 가정오수 처리효율에 미치는 영향)

  • Yang, Eun-Gyoung;Sung, Il-Wha
    • Journal of environmental and Sanitary engineering
    • /
    • v.24 no.1
    • /
    • pp.13-24
    • /
    • 2009
  • This study was performed to determine the effect of the influent flow distribution ratio and hydraulic retention time(HRT) on removal of organic matter, nitrogen and phosphorus when domestic sewage was treated by the advanced step aeration(ASA) process. Results of the experiment for the determination of the optimum influent flow distribution ratio between the anaerobic reactor and the anoxic reactor showed BOD removal efficiencies of above 92.0% at all influent flow distribution ratios from 9:1 to 4:6. The highest T-N removal efficiency was 82.6% at the influent flow distribution ratio of 6:4. On the other hand, the highest T-P removal efficiency was 67.8% at the influent flow distribution ratio of 9:1. Considering both the T-N and T-P removal efficiencies, the influent distribution ratio of 6:4 was considered the optimum. Results of the experiment for the determination of the optimum HRT at the optimum influent flow distribution ratio of 6:4 revealed BOD removal efficiencies better than 92.7% at all HRTs from 12hr down to 6hr. The highest T-N and T-P removal efficiency were 82.6% and 59.5%, respectively both at the HRT of 8hr. In conclusion, the optimum influent flow distribution ratio and HRT for treatment of domestic sewage by the ASA process were determined to be 6:4 and 8hr, respectively.

Evaluation of Treatment Efficencies of Pollutants in Juksancheon Constructed Wetlands for Treating Non-point Source Pollution (비점오염원 저감을 위한 죽산천 인공습지의 오염물질 정화효율 평가)

  • Choi, Ik-Won;Seo, Dong-Cheol;Kang, Se-Won;Lee, Sang-Gyu;Seo, Young-Jin;Lim, Byung-Jin;Park, Jong-Hwan;Kim, Kap-Soon;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.642-648
    • /
    • 2012
  • To evaluate the water quality in Juksancheon constructed wetlands for treating non-point source pollution, the removal rates of nutrients in water and the total amounts of T-N and T-P uptakes by water plants were investigated. Chemical characteristics of T-N and T-P in sediment were investigated. The concentrations of BOD (Biochemical Oxygen Demand), COD (Chemical Oxygen Demand), SS (Suspended Solids), T-N and T-P in inflow were 0.07~1.47, 0.60~2.65, 0.50~4.60, 1.38~6.26 and $0.08{\sim}0.32mg\;L^{-1}$, respectively. The removal rates of BOD, COD, SS, T-N, and T-P were -10, 51, 66, -3 and 5%, respectively. The maximum amount of T-N uptake by water plants in August was $368.7mg\;plant^{-1}$ in the $2^{nd}$ treatment stage by Nymphoides peltata, $1314.6mg\;plant^{-1}$ in the $3^{rd}$ treatment stage by Iris pseudacorus, $1160.4mg\;plant^{-1}$ in the $4^{th}$ treatment stage by Nymphaea tetragona GEORGI, respectively. The maximum amount of T-P uptake by water plants in August was $121.7mg\;plant^{-1}$ by Nymphoides peltata in the $2^{nd}$ treatment stage, $268.7mg\;plant^{-1}$ by Iris pseudacorus in the $3^{rd}$ treatment stage and $212.0mg\;plant^{-1}$ by Nymphaea tetragona GEORGI in the $4^{th}$ treatment stage, respectively. Organic matter contents in sediments were not different. Contents of T-N and T-P in sediments were higher in spring. Microbial biomass C:N:P ratios in sediments in spring, summer, autumn and winter were 117~140:1~4:1, 86~126:5~6:1, 68~101:2~6:1 and 47~138:2~4:1, respectively. We could conclude that Juksancheon constructed wetlands show high removal efficiencies of COD and SS. However, improvements of management in winter season should be considered to improve the removal efficiencies of pollutants.

A Study on Removal Efficiency of T-N in Bench-scale for Shipboard Sewage Treatment Plant (Bench-scale 선박용 고도수처리장치에서의 T-N 제거효율 연구)

  • Choi, Young-Ik;Shin, Dae-Yeol;Lee, Seung-Chul;Jung, Jin-Hee;Yoon, Young-Nae
    • Journal of Environmental Science International
    • /
    • v.27 no.1
    • /
    • pp.39-45
    • /
    • 2018
  • In this study, the International Maritime Organization (IMO)'s guideline MEPC. 277 (64) was developed and evaluated for the removal efficiency of T-N in a SBR and MBR combined process. This combined process of resized equipment based on large capacity water treatment device for a protection of marine aquatic life. In this experiment, T-N concentration of influent and effluent was measured through with the artificial wastewater. The SBR reactor operation time was varied according to the C : N : P ratios so that different conditions for mixing and aeration period in mins (90 : 60, 80 : 40, 70 : 50) and two C: N: P ratios (10 : 5 : 3, 10 : 3 : 1) were used. During experiment in the reactor's aeration and anoxic tank DO concentrations were 3 mg/L and 0.2 mg/L respectively. Furthermore, in the reactor MLSS concentration was 2000 mg/L and flowrate was 2 L/hr. Experiment results showed that C : N : P, 10 : 3 : 1 ratio with 90 mins mixing and 60 mins aeration maximized removal efficiency at 97.3% T-N as compared to other conditions. The application of the SBR and MBR combined process showed efficient results.