• Title/Summary/Keyword: T-OLED

Search Result 81, Processing Time 0.024 seconds

Nano-size Study of Surface-modified Ag Anode for OLEDs (표면처리에 의한 유기발광소자(OLED)용 Ag 전극의 Nano-size 효과 연구)

  • Kim, Joo-Young;Kim, Soo-In;Lee, Kyu-Young;Kim, Hyeong-Keun;Jun, Jae-Hyeok;Jeong, Yun-Jong;Kim, Mu-Chan;Lee, Jong-Rim;Lee, Chang-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.1
    • /
    • pp.12-16
    • /
    • 2012
  • Although silver is used for T-OLED (Top emitting organic Light-Emitting Diode) as reflective anode, it is not an ideal material due to its low work function. Thus, we study the effect of annealing and atmospheric pressure plasma treatment on Ag film that increases its work function by forming the thin silver oxide layer on its surface. In this study, we deposited silver on glass substrate using RF sputtering. Then we treated the Ag samples annealing at $300^{\circ}C$ for 30 minutes in atmosphere or treating the atmospheric plasma treatment for 30, 60, 90, 120s, respectively. We measured the change of the mechanical properties and the potential value of surface with each one at a different treatment type and time. We used nano-indenter system and KPFM (Kelvin Probe Force Microscopy). KPFM method can be measured the change of surface potential. The nanoindenter results showed that the plasma treatment samples for 30s, 120s had very low elastic modulus, hardness and Weibull modulus. However, annealed sample and plasma treated samples for 60s and 90s had better mechanical properties. Therefore, plasma treatment increases the uniformity thin film and the surface potential that is very effective for the performace of T-OLED.

Numerical Simulations of Electric-Optical Characteristics for Organic Light Emitting Diode with Gradient-Doped Emitting Layer (경사 도핑된 발광층을 갖는 유기발광다이오드의 전기광학적 특성 해석)

  • Lee, Young-Gu;Oh, Tae-Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.8
    • /
    • pp.638-644
    • /
    • 2010
  • We have carry out numerical simulation of the electric-optical characteristics of organic light emitting diodes with gradient-doped emitting layer which were reported to be effective in improving luminous efficiency and lifetime. In this paper, the basic structure is comprised of ITO/NPB/$Alq_3$:C545T[%]/$Alq_3$/LiF/Al, six devices by separating the emitting layer of $Alq_3$:C545T[%] were studied. As the result, the uniformly-doped devices exhibited superior luminous efficiency-current density characteristics over conventional undoped device. In the case of gradient-doped devices, electric-optical characteristics were improved similar to uniformed-doped devices, unusually the distribution of traped-charge density in the OLED devices was shown as the staircase.

UV 처리에 의해 표면 산화 처리한 Silver Oxide 박막의 결정 변화에 따른 Nano Mechanics 특성 연구

  • Lee, Gyu-Yeong;Kim, Seong-Jun;Song, Ji-Eun;Kim, Su-In;Lee, Chang-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.506-506
    • /
    • 2013
  • Ag (Silver) 박막은 낮은 전기 저항과 높은 가시광대의 반사율을 가져 T-OLED (Top Emission-Organic Light Emitting Diode)의 Anode로 각광 받고 있지만, 일반적인 Ag 박막의 일함수는 4.3 eV 이하로 T-OLED의 Anode로 사용하기에는 낮은 단점이 있다. 따라서 이를 극복하기 위한 방법으로 Ag 박막 표면을 산화시켜 일함수를 증가시키기 위한 연구가 진행중에 있다. 하지만 연구는 단순히 일함수를 증가시키는 것에 한정되어 있을 뿐 UV 처리된 박막의 nano-mechanics 특성에 대한 연구는 현재 전무하다. 따라서 본 연구에서는 순도 99.9%의 Ag 타겟을 이용하여 rf magnetron sputter 장비를 통해 Ag 박막을 증착 하였고, 이후 UV (Ultra-Violet) 램프를 통해 시료 표면을 산화시켰다. 특히, 이 논문의 주요 관심사인 박막의 nano mechanics 특성 분석을 위하여 nano indenter와 SPM (Scanning Probe microscope) 장치를 활용 하였다. 실험 결과 후처리 시간이 3분 이하인 경우 박막이 비결정질의 silver oxide로 성장하는 것을 확인하였으며, 이때 박막의 면저항은 $0.16{\Omega}$/sq.에서 $0.55{\Omega}$/sq.로 증가하는 것을 관찰할 수 있었고, 3분 이후, 비결정질의 silver oxide가 conducting 특성을 갖는 silver oxide 결정을 이루면서 면저항이 $0.55{\Omega}$/sq.에서 $0.21{\Omega}$/sq.로 감소하는 것을 보았다. 또한 결정질의 박막이 자라는 3분이상의 박막에서 surface hardness는 급격하게 증가($3.57{\rightarrow}9.47$ GPa)했으며, 6분 이후에는 감소하는($9.47{\rightarrow}3.46$ GPa) 경향을 보였다. 이러한 경향은 silver oxide의 결정 크기가 Ag 결정 보다 크므로 상대적인 압축응력을 받아 표면 경도가 증가됐다. 처리시간 6분 이후, 경도 감소는 박막의 표면 물성이 불안정해졌기 때문이다.

  • PDF

Fabrication and Characterization of High Performance Green OLEDs using $Alq_3$-C545T Systems ($Alq_3$-C545T시스템을 이용한 고성능 녹색 유기발광다이오드의 제작과 특성 평가)

  • Jang Ji-Geun;Kim Hee-Won;Shin Se-Jin;Kang Eui-Jung;Ahn Jong-Myong;Lim Yong-Gyu
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.1 s.38
    • /
    • pp.51-55
    • /
    • 2006
  • The green emitting high performance OLEDs using the $Alq_3$-C545T fluorescent system have been fabricated and characterized. In the device fabrication, 2-TNATA [4,4',4'-tris(2-naphthylphenyl-phenylamino)-triphenylamine] as a hole injection material and NPB [N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] as a hole transport material were deposited on the ITO(indium thin oxide)/glass substrate by vacuum evaporation. And then, green color emission layer was deposited using $Alq_3$ as a host material and C-545T[10-(2-benzothiazolyl)-1,1,7,7- tetramethyl-2,3,6,7-tetrahydro-1H,5H,11H-[1]/benzopyrano[6,7,8-ij]-quinolizin-11-one] as a dopant. Finally, small molecule OLEDs with structure of ITO/2-TNATA/NPB/$Alq_3$:C545T/$Alq_3$/LiF/Al were obtained by in-situ deposition of $Alq_3$, LiF and Al as the electron transport material, electron injection material and cathode, respectively. Green OLEDs fabricated in our experiments showed the color coordinate of CIE(0.29, 0.65) and the maximum power efficiency of 7.3 lm/W at 12 V with the peak emission wavelength of 521 nm.

  • PDF

Synthesis and Optical Properties of Acrylic Copolymers Containing AlQ3 Pendant Group for Organic Light Emitting Diodes

  • Kim, Eun-Young;Myung, Sung-Hyun;Lee, Young-Hee;Kim, Han-Do
    • Clean Technology
    • /
    • v.18 no.4
    • /
    • pp.366-372
    • /
    • 2012
  • Three acrylic copolymers containing tris(8-hydroxyquinoline) aluminum (AlQ3) pendant group (25 wt%), acrylateco-HEMA-$AlQ_3$ (25 wt%), were successfully synthesized by free radical polymerization from acrylates [methyl methacrylate (MMA), acrylonitrile (AN) or 2-hydroxyethyl methacrylate (HEMA)] with HEMA functionalized with AlQ3 pendant groups (HEMA-p-$AlQ_3$). The glass transition temperatures ($T_g$) of MMA-co-HEMA-p-$AlQ_3$ (copolymer 1), AN-co-HEMA-p-$AlQ_3$ (copolymer 2) and HEMA-co-HEMA-p-$AlQ_3$ (copolymer 3) were found to be 158, 150 and $126^{\circ}C$, respectively. They have good thermal stability: a very desirable feature for the stability of OLEDs. Their solubility, thermal properties, UV-visible absorption and photoluminescence behaviors were investigated. They were found to be soluble in various organic solvents such as tetrahydrofuran (THF), dimethylformamide (DMF), toluene and chloroform. It was also found that the UV-visible absorption and photoluminescence behaviors of these copolymers were similar to those of pristine $AlQ_3$. Green organic light-emitting diodes (OLEDs) have also been fabricated using these copolymers as light emission/electron transport components obtained easily by spin coating, and their current density voltage (J-V) curves were compared. The OLED device of the copolymer 3 had the lowest turn-on voltage of about 2 V compared to other copolymer types devices.

A Study on Improvement Lifetime of Passive Matrix Organic Light Emitting Diode using Single Layer Thin Film (PMOLED의 수명향상을 위한 단일박막구조의 봉지기술에 관한 연구)

  • Ki, Hyun-Chul;Kim, Sun-Hoon;Kim, Doo-Gun;Kim, Hyo-Jin;Kim, Hwe-Jong;Hong, Kyung-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.282-283
    • /
    • 2009
  • In the research, we have proposed a novel encapsulation with simple process and steady film for external environment in comparison with conventional encapsulation method. This was designed to cover the emitting organic material from air. Silicon 야oxide was used for thin film of encapsulation and the deposition thickness of the organic film was 220 nm. Operating voltage of green OLED with encapsulation was 5.5 V and luminance was 7.370 cd/$m^2$ at the applied voltage of 14.5 V. Luminance was measured in 10 hour intervals at the air-exposed condition. After 110 hours and 300 hours, luminances of green OLED were 7,368 and 7,367 cd/$m^2$, respectively. Luminance of green JLED doesn't decrease until 300 hours. As a results, proposed encapsulation can increase the life time of green OLED.

  • PDF

Preparation of Novel Fused Ring Spiro[benzotetraphene-fluorene] Derivatives and Application for Deep-Blue Host Materials

  • Kim, Min-Ji;Lee, Chil-Won;Gong, Myoung-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1639-1646
    • /
    • 2014
  • A series of novel fused-ring spiro compounds, spiro[benzo[ij]tetraphene-7,9'-fluorene] (SBTF) derivatives containing an end-capping aryl substituent at both the C3 and C10-positions hasbeen designed and synthesized via multi-step Suzuki coupling reactions. 3-(1-Naphthyl)-10-phenylSBTF (1N-PSBTF), 3-(2-naphthyl)-10-phenylSBTF (2N-PSBTF) and 3-[4-(1-naphthyl)phenyl]-10-phenylSBTF (NP-PSBTF) showed improved glass transition temperatures ($T_g$) with good thermal stability. Their photophysical, electrochemical, and electroluminescent properties were investigated and were used to construct blue organic light emission diodes (OLEDs). The typical OLED devices showed excellent performance; the NP-PSBTF-based device exhibited highly efficient deep blue-light emission with a maximum efficiency of 5.27 cd/A (EQE, 4.63%) with CIE (x = 0.133, y = 0.144). According to these characteristics, these deep-blue light emitting materials have sufficient potential for fluorescent OLED applications.

Fabrication of Organic Electroluminescent Device and electro-optical properties using metal-chelates($Snq_2,Snq_4$) for Emitting Material Layer (금속-킬레이트계($Snq_2,Snq_4$) 발광층을 이용한 유기 전기 발광 소자의 제작과 전기.광학적 특성)

  • Yoon, H.C.;Yoo, J.H.;Kim, B.S.;Kim, J.K.;Kwon, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1575-1577
    • /
    • 2002
  • In this study, multi layer type OLED(Organic Light Emitting Diode) has been fabricated using $Snq_2$, $Snq_4$, and $Alq_3$ for development of high efficiency, electrical and optical properties of multi layer type OLED investigated. The HTL(Hole Transfer Layer) and EML(Emitting Material Layer) were fabricated by using vacuum evaporation on ITO electrode, and its thickness controlled using thickness monitor. Al was used as a cathode. The electrical and optical properties such as J-V, brightness-V and EL spectrum of OLED device was measured using I.V.L.T system. The result, brightness of $Alq_3$, $Snq_2$ and $Snq_4$ were $3900cd/m^2$, $63cd/m^2$ and $23cd/m^2$ respectively.

  • PDF

The Effect of Plasma Treatment on the OLED Characteristics (플라즈마 처리가 유기발광다이오드의 특성에 미치는 영향)

  • Shin, Se-Jin;Ahn, Jong-Myung;Kim, Min-Young;Jang, Ji-Geun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.1 s.18
    • /
    • pp.23-26
    • /
    • 2007
  • The effects of plasma treatment on the ITO/glass substrate before deposition of organic materials were investigated in the fabrication of green light emitting organic devices with $Alq_3-C545T$ fluorescent system. In our experiments, the optimum plasma treatment was obtained at the power and time of 150W and 2 minutes under the $Ar(50%)/O_2$ ambient of 1 mTorr. The green OLED with plasma treatment at 150W for 2 minutes showed the luminance and efficiency of $4700\;cd/m^2$ and 8 lm/W at 10V, respectively. On the contrary, the same structured device without plasma treatment showed much lower performance with the luminance of $2600\;cd/m^2$ and the efficiency of 3.6 lm/W at 10 V.

  • PDF

Development of Measurement System for Deflection of the Large-Size FPD (대면적 평판 디스플레이용 유리기판의 처짐 측정장치 개발)

  • Kim, Sook-Han;Kim, Tae-Sik;Lee, Eung-Ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.4
    • /
    • pp.1-5
    • /
    • 2008
  • There is a need to enlarge the mother glass substrate in OLED to raise its productivity and to realize OLED TV. On the other hand, some difficulties may arise regarding the deflection of a large glass substrate during its handling operation due to its thinness $(0.5\sim0.7t)$, which is not even enough to allow it to stand its own mass. This thesis proposes a conceptual plan for the application of the clamping- and bending-end conditions to the glass substrate handler. To verify proposed plan, the non-contact 3 dimensional measuring instrument is developed. The composition of the 3 dimensional measuring instrument measures shape of the product using X-Y stage robot and laser distance sensor. X-Y stage robot and laser distance sensor are controlled by LabVIEW language. To calibrate measuring instrument, the direction conversion of the Euler angle was used. In order to confirm deflection of the glass substrate, the experiment was carried out at the bending end boundary condition and the proposed effect was verified.

  • PDF