• Title/Summary/Keyword: T-N removal

Search Result 608, Processing Time 0.024 seconds

Anaerobic-aerobic granular system for high-strength wastewater treatment in lagoons

  • Hamza, Rania A.;Iorhemen, Oliver T.;Tay, Joo H.
    • Advances in environmental research
    • /
    • v.5 no.3
    • /
    • pp.169-178
    • /
    • 2016
  • This study aimed at determining the treatability of high-strength wastewater (chemical oxygen demand, COD>4000 mg/L) using combined anaerobic-aerobic granular sludge in lagoon systems. The lagoon systems were simulated in laboratory-scale aerated and non-aerated batch processes inoculated with dried granular microorganisms at a dose of 0.4 g/L. In the anaerobic batch, a removal efficiency of 25% was not attained until the 12th day. It took 14 days of aerobic operation to achieve sCOD removal efficiency of 94% at COD:N:P of 100:4:1. The best removal efficiency of sCOD (96%) was achieved in the sequential anaerobic-aerobic batch of 12 days and 2 days, respectively at COD:N:P ratio of 200:4:1. Sequential anaerobic-aerobic treatment can achieve efficient and cost effective treatment for high-strength wastewater in lagoon systems.

Estimation of Nutrient Removal Efficiency and Phase Conversion Rate of Single Reactor SBR and SBR with Flexible Vertical (단일 및 가변형 SBR 공법의 영양염류 처리효율 및 "상"전환속도 평가)

  • Kim, Man-Soo;Park, Jong-Woon;Park, Chul-Whi;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.11
    • /
    • pp.1215-1221
    • /
    • 2005
  • The purpose of this research was to compare the nutrient removal efficiency, and to estimate the net reaction time in order to calculate a "phase" transfer rate. SBR(SBR1) with flexible verticals and single reactor SBR(SBR1). Consequently, the removal efficiencies of $COD_{Cr}$, and $BOD_5$ in SBR1 and SBR2 were 91.5%, 97.5% and 90.4%, 97.3%, Respectively. Accordingly, the organic removal efficiency was not distinguished in both processes. In the T-N and T-P removal efficiencies, however, SBR1 obtained higher removal efficiency than SBR2, at 12.1% and 7.6% respectively. Also, in the experiment to estimate the "phase" transfer rate, SBR1 was higher than SBR2 Because SBR1 has two phases in the single reactor simultaneously, it has the buffer capacity to reduce the "phase" transfer time and provides a definite reaction condition.

Effect of Air-flow on Enhanced Nutrient Removal and Simultaneous Nitrification/Denitrification in DMR Biofilm Process (DMR 생물막 공정에서 포기량에 따른 질산화 동시 탈질화 및 영양염류 제거특성)

  • Kim, Il-Kyu;Lee, Sang-Min;Lim, Kyeong-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.10
    • /
    • pp.992-998
    • /
    • 2008
  • Recently, a new concept for nitrogen removal that is simultaneous nitrification and denitrification(SND) has been studied for wastewater treatment process. The DMR(Daiho Microbic Revolution) process that used in this study consists of two suspended anoxic, anaerobic reactors and an aerobic biofilm reactor. The function of aerobic environment and the intensity of air flow rate(2.0, 1.0, 0.5, 0.4, 0.2 L/min) were studied in the biofilm reactor; also SND and nutrient removal efficiencies were investigated. Experimental results indicated that the change in air flow did not affect COD$_{Cr}$ removal significantly. Thus sustained at 93%. The lower the air flow rate, the higher T-N removal efficiency was attained(i.e.80% at 0.2 L/min). SND efficiency was 62, 65, 72 and 78% corresponding to each air flow rate. T-P removal was sensitive to aeration intensity and removal enhanced from 75% to 96% when the air flow rate was changed from 2.0 to 0.5 L/m; however second release occured in the clarifier at 0.2 L/min. Phosphorus content of activated sludge was 5.0%, as P releases and acetate uptake a ratio of 0.75 mg P/ mg HAc.

Algae and Nutrient Removal by Vegetated Artificial Floating Island (인공식물섬에 의한 조류(Algae)및 영양염류의 제거)

  • Park, Sun-Koo;Cho, In-Ki;Kwon, Oh-Byung;Mun, Jung-Soo;Um, Han-Yong;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.spc
    • /
    • pp.93-98
    • /
    • 2008
  • We investigated the effect on the removal of BOD, SS, TN and TP and algal growth inhibition of Vegetated Artificial Floating Island (VAFI), by examining microorganism activity and nutrient uptake in the batch test of various conditions: (1) Blank (Control group), (2) VAFI of $0.25m^2$, (3) AFI of $0.25m^2$ which has no vegetation, (4) buoyant plate of $0.25m^2$, (5) buoyant plate of $0.25m^2$ with linear media. The proportion of BOD removal in the VAFI, AFI, buoyant plate and buoyant plate with media were 82.7, 80.8, 45.2% and 59.6% respectively. TN removal in the VAFI, AFI and buoyant plate with media were 51.2, 31.7% and 25.1% respectively. TP removal in the VAFI, AFI, buoyant plate and buoyant plate with media were 23.3, 16.7, 10.0% and 13.3% respectively. Chlorophyll-${\alpha}$ removal in the VAFI was 97.9%. The factors of chlorophyll-${\alpha}$ removal in the VAFI accounted for the shading effect of 35.1%, microorganisms activity of 61%, and plant root of 1.8%.

Evaluation of the Water Purification Efficiency of Waste LCD Glass Media by Using Foaming Technology (발포기술을 이용한 폐 LCD유리 여재의 수질정화능력 평가)

  • Ahn, Tae-Woong;Choi, I-Song;Oh, Jong-Min
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.4
    • /
    • pp.369-376
    • /
    • 2010
  • The purpose of this study is to reprocess Waste-LCD(Liquid Crystal Display), to widely increase specific surface-area by foaming agent in the process of reprocessing and to use as a substrate of water treatment which is increased the ability of biological treatment, as well as to control non-point source pollutants produced by surface run off during rainfall with using this substrate, and to improve water quality of public watershed as developing substrate for water treatment to be able to purify second treated water which is exhausted at the wastewater treatment plant. The average removal efficiency of Waste-LCD that using the foaming technology was SS 71.2%, BOD 55.7%, COD 58.4%, T-N 29.5% and T-P was 50.3%. Almost Media, early stage showed low removal efficiency of SS and BOD. However, it became high when the microorganism adhered the Media. The variation of SS removal efficiency was high by inflow concentration of SS. The reason for the Media 4 showed high SS removal efficiency is that it has wide specific surface-area, and also it has a pore. All in all, it shows floating matter treatment ability not only inside but it also works outside of the substrate.

Advanced Wastewater Treatment using Sludge Solubilization by the Cavitation and PGA addition (Cavitation에 의한 슬러지 가용화와 PGA를 이용한 하수고도처리에 관한 연구)

  • KIM, Dongha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.4
    • /
    • pp.449-454
    • /
    • 2008
  • Some pretreatment methods have been proposed to enhance the biodegradability and to shorten the hydrolysis reaction time. By means of efficient pretreatment the suspended solids (SS) can be made of better accessible for the anaerobic bacteria. There are several ways how this can be accomplished, which include biological, mechanical, thermal, and chemical methods. For the sludge solubilization using the cavitation phenomenon, we have tried to develop a pretreatment process consisted of a reactor and pumps. The objectives of this study were to develop a advanced wastewater treatment consisted of IABR and the cavitation with PGA. The most effective removal for organic matter and nutrients were occured when both cavitation pretreatment and ${\gamma}$-PGA were applied at the IABR process. Only small portion of ${\gamma}$-PGA at a rate of 1.38mg/L, was enough to improve sedimentation ability, SS removal efficiencies, and sludge volume reduction. After the sludge solubilization by the cavitation, SCOD increased to 193% and SS decreased to 36%. The removal ratio of BOD was 94.5%, T-N removal ratio was 85.5% and T-P removal ratio was 84.9%. The combination process of the IABR with the cavitation and PGA addition seems to be very effective alternative wastewater treatment process.

Effects of sludge and $CO_2$ addition on advanced treatment of swine wastewater by using microalgae (미세조류를 이용한 양돈폐수 고도처리에서 슬러지 및 이산화탄소의 첨가의 영향)

  • Lim, Byung-Ran;Park, Ki-Young;Lee, Ki-Say;Lee, Soo-Koo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.307-312
    • /
    • 2011
  • The potential of algal-bacterial culture was investigated for advanced treatment of animal wastewater. Fed-batch experiments were carried out to examine treatability of nitrogen and phosphorus in different microbial consortium: Chlorella vulgaris, activated sludge, three microalgae strains (Scenedesmus, Microcystis, Chlorella) and Bacillus consortium, and three microalgae strains and sludge consortium. Single culture of C. vugaris showed the better efficiency for nitrogen removal but was not good at organic matter and phosphorus removal compared with activated sludge. Three microalgae and Bacillus consortium was best culture among the culture and consortium for pollutants removal tested in this experiment. Effect of $CO_2$ addition was studied by using three microalgae and Bacillus consortium. $CO_2$ addition enhanced T-P removal efficiency up to 60%. However, removal efficiencies of T-N and ammonia nitrogen reduced on the contrary.

A Study on Constructed Wetland Ecological Park Design with Multiple-cell FWS Layout -focus on Structural Design of Sustainable Structured wetland Biotope(SSB) Park- (자유수면형 인공습지 환경·생태공원 설계 -생태적 수질정화비오톱 공원의 구조설계를 중심으로-)

  • Byeon, Wooil
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.5
    • /
    • pp.1-9
    • /
    • 2006
  • The purpose of this study is to make a design guideline in designing constructed wetland which can treat water quality both of point and nonpoint source water pollution. It focuses on structural aspects of two case studies of constructed wetland applying SSB(Sustainable Structured wetland Biotope) system in Korea. The constructed wetland of Lake Ju-am which was constructed in 2002 by Environmental Management Corporation, was designed by applying SSB system. It shows higher removal efficiency than expected - 56% of BOD removal efficiency, 60% of T-N removal, and 76% of T-P removal efficiency. In two cases, total wetland areal extents were calculated referred to treatment efficiency. The system is consist of micro-cell structures : inflow channel, forebay, multiple wetland cells and micro-pool. When designing constructed wetland appropriate in local area, the total organic system of vertical and horizontal structure : geology, hydrology, land use, and ecological surroundings of the sites should be considered totally.

Performance of GACC and GACP to treat institutional wastewater: A sustainable technique

  • Khaleel, Mohammed R.;Ahsan, Amimul;Imteaz, M.;El-Sergany, M.M.;Nik Daud, N.N.;Mohamed, T.A.;Ibrahim, Buthainah A.
    • Membrane and Water Treatment
    • /
    • v.6 no.4
    • /
    • pp.339-349
    • /
    • 2015
  • Experiments were carried out using granular activated carbon (GAC) adsorption techniques to treat wastewater contaminated with organic compounds caused by diverse human activities. Two techniques were assessed: adsorbent GAC prepared from coconut shell (GACC) and adsorbent GAC from palm shell (GACP). A comparison of these two techniques was undertaken to identify ways to improve the efficiency of the treatment process. Analysis of the processed wastewater showed that with GACC the removal efficiency of biochemical oxygen demand (BOD), chemical oxygen demand (COD), turbidity, total suspended solids (TSS) and total dissolved solids (TDS) was 65, 60, 82, 82 and 8.7%, respectively, while in the case of GACP, the removal efficiency was 55, 60, 81, 91 and 22%, respectively. It can therefore be concluded that GACC is more effective than GACP for BOD removal, while GACP is better than GACC for TSS and TDS removal. It was also found that for COD and turbidity almost the same results were achieved by the two techniques. In addition, it was observed that both GACC and GACP reduced pH value to 7.9 after 24 hrs. Moreover, the optimal time period for removal of BOD and TDS was 1 hr and 3 hrs, respectively, for both techniques.

Assessment of Field Applicability of a Zero Discharge and Reuse System (무방류 재이용 시스템 현장 적용성 평가)

  • Cho, Kyung-Sook;Lee, Kwang-Ya
    • Current Research on Agriculture and Life Sciences
    • /
    • v.29
    • /
    • pp.75-81
    • /
    • 2011
  • This study performed field examinations of a zero discharge and reuse system developed by Hong and Choi(2009). The system installed one of villages located in Hyoryeong-myeon, Gunwee-gun for the experiments. The zero discharge and reuse system consists of anoxic, FES (Ferrous Electricity System), Oxic, Cralifier processes for water treatments. The main feature of the system is to remove phosphorous by using Fe-ionizing module within the FES process. The water purification performances of the system were evaluated, while any defects for using the system were investigated through the field monitoring. It was found that the removal capacities of T-P, T-N, and BOD of the system meet the required water quality with outstanding performance from T-P by obtaining the results of over 90 % removal rates. The efficiency of T-P removal rate of the system found to be greatly influenced by whether using an automatic washing system to the Fe-ionizing module and conducting replacement of iron plate within a proper period.

  • PDF