• Title/Summary/Keyword: T-DMB Hierarchical modulation

Search Result 20, Processing Time 0.02 seconds

Priority Based Blind Equalization for Hierarchical Modulation Systems (계층변조 시스템에서 신호의 우선순위를 이용한 블라인드 등화)

  • Choi, Un-Rak;Seo, Bo-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.12
    • /
    • pp.254-261
    • /
    • 2007
  • In this paper, we propose a blind equalization method for advanced terrestrial digital multimedia broadcasting (AT-DMB) systems which use hierarchical modulation. The AT-DMB system adopts hierarchical 16-ary quadrature amplitude modulation (16-QAM) to ensure backward-compatibly with the differential quadrature phase shift keying (DQPSK) signal of the legacy terrestrial digital multimedia broadcasting (T-DMB) systems and to support higher transmission rate. Due to the hierarchical modulation, the conventional T-DMB signal and the additional signal have different error rate at same signal to noise ratio (SNR). By weighting the decided symbols differently according to the reliability of the symbols, i.e., high priority symbol with low error rate and low priority symbol with high error rate, we can improve the channel estimation accuracy. In this paper, we analyze SNR loss by hierarchical modulation and confirm it through simulations. Moreover, through simulations, we verify that the proposed weighting method improve BER compared to the no-weighting method.

Study on the Performance of Hierarchical Modulation for AT-DMB System (AT-DMB 시스템을 위한 계층변조 방식의 성능 분석)

  • Lee, Sang-Jin;Lee, Sang-Woon;Yang, Kyu-Tae;Lim, Jong-Soo
    • Journal of Broadcast Engineering
    • /
    • v.14 no.4
    • /
    • pp.509-517
    • /
    • 2009
  • This paper introduces an Advanced Terrestrial DMB (AT-DMB) system which provides higher efficiency of transmission and better quality of service than conventional T-DMB system. In AT-DMB, a hierarchical modulation method is applied to transmit more data while maintaining backward compatibility to conventional T-DMB receivers. This method can provide not only high quality video service but also lots of broadcasting channels. In this paper, the performance of the hierarchical modulation in AT-DMB system is analyzed with computer simulation in several environments compared with the performance of T-DMB system.

Error Performance Analysis of Concatenated Codes in advanced T-DMB System with Hierarchical Modulation (계층 변조를 포함한 개선된 지상파 DMB 시스템에서 연접 부호들의 오류 성능 분석)

  • Lim, Hyung-Taek;Lee, Sang-Hoon;Kim, Jeong-Goo;Joo, Eon-Kyeong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.1
    • /
    • pp.10-17
    • /
    • 2007
  • Hierarchical modulation technology which can make the advanced T-DMB(terrestrial-digital multimedia broadcasting) system backward compatible with the conventional T-DMB system and provide high-rate and high-quality services is introduced in this paper. As additional data streams are embedded within the conventional data streams by the hierarchical modulation, the advanced T-DMB system can provide high-quality video service and more broadcasting service channels. In order to guarantee the quality of both the conventional and additional services powerful error correcting scheme is required. The error performance of advanced T-DMB system with hierarchical modulation is investigated and analyzed according to the various error correcting schemes in this paper.

Analysis of laboratory test results on the constellation ratio in hierarchical modulation based AT-DMB (계층변조 기반 AT-DMB의 성상비에 따른 LAB 테스트 결과 분석)

  • Lee, Jae-Hong;Bae, Jae-Hwui;Choi, Seung-Won
    • Journal of Broadcast Engineering
    • /
    • v.14 no.6
    • /
    • pp.721-732
    • /
    • 2009
  • AT-DMB system has been developed to increase data rate up to double of conventional T-DMB in same bandwidth while maintaining backward compatibility. The AT-DMB system adopted hierarchical modulation which adds BPSK signal or QPSK signal as enhanced layer to existing DQPSK signal. The enhanced layer signal should be small enough to maintain backward compatibility and to minimize the coverage loss of existing T-DMB service area. But this causes the enhanced layer signal of AT-DMB susceptible to fading effect in transmission channel. A turbo code which has powerful error correction capability is applied to the enhanced layer signal of the AT-DMB system for compensating channel distortion. We developed the prototype AT-DMB transmitter and receiver systems for performance evaluation. LAB test for analysing the effect of constellation ratio between existing base layer signal and enhancement layer signal, was conducted and the measurement results are shown with analysis comments.

Design of AT-DMB Baseband Receiver SoC

  • Lee, Joo-Hyun;Kim, Hyuk;Kim, Jin-Kyu;Koo, Bon-Tae;Eum, Nak-Woong;Lee, Hyuck-Jae
    • ETRI Journal
    • /
    • v.31 no.6
    • /
    • pp.795-802
    • /
    • 2009
  • This paper presents the design of an advanced terrestrial digital multimedia broadcasting (AT-DMB) baseband receiver SoC. The AT-DMB baseband is incorporated into a hierarchical modulation scheme consisting of high priority (HP) and low priority (LP) stream decoders. The advantages of the hierarchical modulation scheme are backward compatibility and an enhanced data rate. The structure of the HP stream is the same as that of the conventional T-DMB system; therefore, a conventional T-DMB service is possible by decoding multimedia data in an HP stream. An enhanced data rate can be achieved by using both HP and LP streams. In this paper, we also discuss a time deinterleaver that can deinterleave data for a time duration of 384 ms or 768 ms. The interleaving time duration is chosen using the LP symbol mapping scheme. Furthermore, instead of a Viterbi decoder, a turbo decoder is adopted as an inner error correction system to mitigate the performance degradation due to a smaller symbol distance in a hierarchically modulated LP symbol. The AT-DMB baseband receiver SoC is fabricated using 0.13 ${\mu}m$ technology and shows successful operation with a 50 mW power dissipation.

Time Synchronization Performance Improvement based on PN sequence for Advanced T-DMB system (PN 시퀀스 기반 Advanced T-DMB 시간 동기 방법)

  • Bae, Jae-Hwui;Kim, Young-Su;Lim, Jong-Soo;Song, Yun-Jeong;Lee, Soo-In;Han, Dong-Seog
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4B
    • /
    • pp.670-676
    • /
    • 2010
  • A time synchronization method for Advanced T-DMB is proposed using PN sequence inserted in PRS for the transmission of hierarchical modulation mode information. The time synchronization offset is estimated through the cross-correlation of the PN sequence and the received PRS. The performance of the proposed method is analyzed by the BER analysis in mobile channel and the results are shown.

Designing A Concatenated Code To Improve The Error Performance Of Low-Priority Data In T-DMB System With The Hierarchical Modulation

  • Li, Erke;Kim, Sung-Gaun;Kim, Han-Jong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.689-692
    • /
    • 2008
  • Hierarchical modulation has been considered for achieving higher data rates in Terrestrial-DMB(T-DMB) systems. And for achieving a higher data rates transmission, the low-priority (LP) data, which is used to carry additional data, such as video data, audio data and textual data, should be perfectly decoded in a certain value of $E_b/N_o$. Unfortunately, the man-made noise badly affects the high-priority (HP) symbol, which is used to carry the conventional data in the existed T-DMB system; and since the advanced T-DMB system is proposed to fit for the legacy T-DMB receivers, the low-priority symbols in the hierarchical modulation are much worse affected by the neighbors, who are both in the same quadrant. Because of the feature that mentioned previously, the turbo code has been considered to deal with the LP data. And due to the degradation which caused by the shortened symbol distance, the error performance of LP data is not sufficient by only using the turbo code. In this paper, we propose a Reed-Solomon code used outside of turbo code, and with the turbo code, it becomes a concatenated code. In this paper, there are some simulation results, within the comparison of those performances, we can see how a Reed-Solomon code is utilized for degradation of error performance which is caused by the hierarchical constellation, and how to design a Reed-Solomon code which is suitable for improving the degradation of error performance.

  • PDF

Study on Error Correction Method for Advanced Terrestrial DMB (고품질 지상파 DMB를 위한 오류정정방식 연구)

  • Choi, Gyoo-Seok;Jeon, Byung-Chan;Park, In-Kyoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.5
    • /
    • pp.69-75
    • /
    • 2010
  • Advanced T-DMB(Terrestial DMB )system which is a new portable mobile broadcasting system has been developed to increase data rate up to double of conventional T-DMB in same bandwidth while maintaining backward compatibility, using hierarchical modulation method. The Advanced T-DMB system realize high qualification of conventional T-DMB system by adding BPSK signal or QPSK signal as enhanced layer to existing DQPSK signal. The enhanced layer signal should be small enough to maintain backward compatibility and to minimize the coverage loss of existing T-DMB service area. But this causes the enhanced layer signal of Advanced T-DMB susceptible to fading effect in transmission channel. In this paper we applied the duo-binary turbo code which has powerful error correction capability to the enhanced layer signal for compensating channel distortion. And the computer simulation results about the performance of the duo-binary turbo code in Advanced T-DMB system are presented along with analysis comments.

The Study of Hierarchical Transmission Method for Additional Service of Advanced T-DMB (차세대 T-DMB 방송의 부가서비스 제공을 위한 계층적 전송방식에 대한 연구)

  • Kim, Min-Hyuk;Park, Tae-Doo;Kim, Nam-Soo;Jung, Ji-Won;Lee, Seong-Ro;Choi, Myeong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12C
    • /
    • pp.997-1005
    • /
    • 2008
  • In this paper, we proposed advanced T-DMB system which is based on Eureka-147 using UEP coding methods and hiererchical modulation for providing additional services while maintaining BER performance. We simulated the proposed advanced T-DMB system using unequal l6QAM modulation scheme combined with various bit split methods and coding methods such as double binary turbo code of DVB-RCS standard and LDPC code of DVB-S2 standard. In the simulation results, double binary turbo code and LDPC code of proposed advanced T-DMB system have coding gain of 2dB and 3.5dB compared to conventional T-DMB system respectively.

The Study of Bit Split Methods and Double Binary Turbo Code for Additional Service of Advanced T-DMB (차세대 T-DMB 방송의 부가 서비스 제공을 위한 비트 분리 방법 및 Double Binary Turbo 부호 적용 연구)

  • Kim, Nam-Soo;Bae, Jong-Tae;Kim, Min-Hyuk;Jung, Ji-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.10
    • /
    • pp.1065-1074
    • /
    • 2008
  • T-DMB(Terrestrial Digital Multimedia Broadcasting) system, is based on the Eureka-147 standard, provides various multimedia data services. However T-DMB system needs upgrades for more various services and better services. Therefore, we proposed advanced T-DMB system using unequal error protection system and hierarchical modulation in this paper while maintaing backward compatibility. And we simulated various bit split methods and double binary turbo code of DVB-RCS standard as method of LP data stream for additional service of advanced T-DMB. As the simulation results, double binary turbo code of proposed advanced T-DMB system have each coding gain of over 2 dB compared to conventional T-DMB.